Journal Mobile Options
Table of Contents
Vol. 45, No. 4, 1995
Issue release date: 1995
Section title: Original Paper
Brain Behav Evol 1995;45:209–220
(DOI:10.1159/000113551)

The Orientation of the Cervical Vertebral Column in Unrestrained Awake Animals (Part 1 of 2)

II. Movement Strategies

Graf W.a · de Waele C.b · Vidal P.P.b · Wang D.H.a · Evinger C.c
a The Rockefeller University, New York, N.Y., USA; b Laboratoire de Physiologie Neurosensorielle-CNRS, Paris, France; c Department of Neurobiology and Behavior, State University of New York, Stony Brook, N.Y., USA

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 9.00
Account: USD 8.00

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 1/15/2008
Issue release date: 1995

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE

Abstract

Previously we demonstrated a stereotyped resting posture of the head-neck arrangement in a number of vertebrates: the cervical vertebral column is oriented vertically to form one portion of the partial S-shaped configuration of the entire spine. The present investigation quantified the various strategies of head-neck movements employed by different mammalian species (humans, monkeys, cats, rabbits and guinea pigs) using cineradiography. At rest, bipeds and quadrupeds hold their heads at the extreme point of flexion of the passive atlanto-occipital range of motion. In this posture, the horizontal semicircular canals are tilted upward from earth horizontal by 5 to 10° and roughly parallel the plane determined by the two obliquus capitis posterior muscles. Furthermore, at this head position, the utricular maculae become oriented earth-horizontally. In quadrupedal animals, head-neck movements in the sagittal plane result from movement at the atlanto-occipital articulation (head/C1) and at the multi-articular cervico-thoracic junction (C6-Th3). Only very small flexion/extension movements occur within the body of the cervical vertebral column (C2–C5). Lowering the head from the resting position is only possible by flexion at the C6-Th3 vertebrae. Raising of gaze from the resting position is only possible by extension of the head at the atlanto-occipital articulation. By contrast, sagittal plane head movements in bipeds are largely confined to the cervico-thoracic junction. This is related to a significantly reduced range of motion of the atlanto-occipital articulation. In monkeys and humans, its range of motion is about 13 and 8–11°, respectively, compared to 105° in rabbits. Our cineradiographic data demonstrated different strategies for head movements in the sagittal plane between quadrupeds and bipeds. At one end of the spectrum, in the case of rabbits, there was no systematic relationship between head and neck orientation. Rabbits stabilized head posture by using the head-neck structure in a parallelogram fashion, which resulted in head posture being largely independent of cervical vertebral column orientation. In monkeys and humans, however, orientation of the head depended almost entirely on the orientation of the cervical vertebral column. In such case, head movements in the sagittal plane almost exclusively relied on the positioning of the cervico-thoracic junction. These different strategies again correlate with the different ranges of motion of the atlanto-occipital articulation. We suggest that vertebrates use mechanical constraints and preferred planes of action for head-neck movement control to simplify sensory-motor transformations subserving motor control and plasticity and to minimize neuronal operations.

© 1995 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 1/15/2008
Issue release date: 1995

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.