Cover

Proteomics in Nephrology - Towards Clinical Applications

Editor(s): Thongboonkerd V. (Bangkok) 
Add to my selection
Thongboonkerd V (ed): Proteomics in Nephrology - Towards Clinical Applications. Contrib Nephrol. Basel, Karger, 2008, vol 160, pp 172-185
(DOI:10.1159/000125981)
Paper

Proteomic Approaches for the Study of Cell Signaling in the Renal Collecting Duct

Hoorn E. · Pisitkun T. · Yu M. · Knepper M.
Laboratory of Kidney and Electrolyte Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Md., USA Thongboonkerd V (ed): Proteomics in Nephrology - Towards Clinical Applications. Contrib Nephrol. Basel, Karger, 2008, vol 160, pp 172-185 (DOI:10.1159/000125981)

Abstract

In the current era of large-scale biology, proteomics has evolved as a powerful, new technique that aims to identify, quantify, and analyze a large number of proteins in a functional context. Therefore, proteomics can be used to study cellular pathways and identify disease biomarkers. In this review, we first outline the principles of two important proteomics techniques that either use difference gel electrophoresis (DIGE) or liquid chromatography (LC) for protein separation, followed by tandem mass spectrometry (MS/MS). The advantages and limitations of each technique are discussed, emphasizing the ability of DIGE to perform quantitative proteomics and the high-throughput and high-sensitivity characteristics of LC-MS/MS. We have employed both techniques to unravel the molecular machinery of vasopressin signaling, which governs water homeostasis by recruiting aquaporin-2 (AQP2) water channels after activation of the vasopressin-2 receptor by vasopressin. Several aspects of vasopressin signaling in the inner medullary collecting duct (IMCD) were investigated, including the short- and long-term regulation of AQP2, phosphoproteomics, signaling during vasopressin escape, and the proteomes of AQP2-bearing vesicles and the IMCD plasma membranes. We also emphasize that proteomics of body fluids will be the strategy to identify disease biomarkers, and therefore conclude the review by highlighting the perspectives of biomarker discovery in urinary exosomes.

Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.