Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Journal Mobile Options
Table of Contents
Vol. 33, No. 4, 1996
Issue release date: 1996
Section title: Research Paper
J Vasc Res 1996;33:288–298
(DOI:10.1159/000159156)

Serotonin Stimulates Protein Tyrosyl Phosphorylation and Vascular Contraction via Tyrosine Kinase

Watts S.W.a · Yeum C.H.c · Campbell G.v · Webb R.C.b
aDepartment of Pharmacology and Toxicology, Michigan State University, East Lansing, and bDepartment of Physiology, University of Michigan, Ann Arbor, Mich., USA; cDepartment of Physiology, Chosun University, Kwang Ju, Republic of Korea

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Research Paper

Received: August 28, 1995
Accepted: January 05, 1996
Published online: September 24, 2008
Issue release date: 1996

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 0

ISSN: 1018-1172 (Print)
eISSN: 1423-0135 (Online)

For additional information: http://www.karger.com/JVR

Abstract

Serotonin (5-HT, 5-hydroxytryptamine) is a mitogen in vascular smooth muscle and vascular reactivity to 5-HT is significantly enhanced in hypertension and atherosclerosis. We have tested the hypothesis that tyrosine kinases, enzymes important for mitogenesis, may play a role in 5-HT-induced vascular smooth muscle contractility. Helical strips of rat carotid artery and aorta denuded of endothelium were mounted in tissue baths for measurement of contractile force. The tyrosine kinase inhibitor genistein (5 × 10-6M) decreased the potency of 5-HT approximately 4-fold and reduced maximal contraction to 5-HT in carotid arterial strips denuded of endothelium (58% control). Genistein’s inactive congener daidzein (5 × 10-6M) did not reduce maximal contraction to 5-HT in carotid arteries but did shift the 5-HT concentration response curve 3-fold to the right. Tyrphostin 23 (5 × 10–5M), another tyrosine kinase inhibitor, decreased the potency of 5-HT 4-fold and reduced the maximal contraction to 5-HT in the carotid artery (10% control). Contractions induced by phorbol-12,13-dibutyrate (10-9 to 10-5M) were not reduced or shifted by either tyrosine kinase inhibitor, indicating that phorbol-ester-sensitive protein kinase C isoforms were not affected. KCl-induced contraction was shifted 2-fold and the maximum significantly inhibited by tyrphostin 23 (38.6% control) but not genistein or daidzein, indicating that tyrphostin 23 but not genistein may inhibit voltage-gated calcium channels to reduce contractility. Western blot analysis using antiphosphotyrosine antibody confirmed that 5-HT produced a time- and concentration-dependent increase in the phosphotyrosine immunoreactivity of a 42-kD protein in cultured aortic smooth muscle cells. Lysate immunoprecipitation with an anti-mitogen-activated-protein (MAP)-kinase antibody indicated that the 42-kD protein was most likely a MAP kinase. 5-HT (10-5M) stimulated contraction and increased antiphosphotyrosine immunoreactivity in whole aorta mounted in tissue baths. Importantly, aortic contraction to 5-HT was shifted (5-fold rightward) and reduced (69% control) by genistein but not daidzein. These findings demonstrate that (1) tyrosine kinase activation may partially mediate contractility to 5-HT in arterial smooth muscle, (2) tyrphostin 23 is somewhat nonselective and (3) 5-HT stimulates tyrosine kinase as documented by increased tyrosyl phosphorylation of proteins in cultured aortic smooth muscle cells and aortic tissue in active contraction of 5-HT. These findings have significant implications not only in understanding a novel pathway of 5-HT signal transduction but also in vascular diseases in which growth and/or contractility to 5-HT is increased (e.g. hypertension, atherosclerosis).

© 1996 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Research Paper

Received: August 28, 1995
Accepted: January 05, 1996
Published online: September 24, 2008
Issue release date: 1996

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 0

ISSN: 1018-1172 (Print)
eISSN: 1423-0135 (Online)

For additional information: http://www.karger.com/JVR


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.