Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Journal Mobile Options
Table of Contents
Vol. 20, No. 2-3, 1998
Issue release date: March – June
Section title: Original Paper
Dev Neurosci 1998;20:188–203
(DOI:10.1159/000017313)

Dopamine Receptors and Dopamine Transporter in Brain Function and Addictive Behaviors: Insights from Targeted Mouse Mutants

Drago J.a · Padungchaichot P.a · Accili D.b · Fuchs S.c
a Department of Anatomy, Monash University, Clayton, Australia; b Developmental Endocrinology Branch, National Institute of Child Health and Human Development, Bethesda, Md., USA; c Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 9.00
EUR 8.00
USD 9.00

Select

Rent/Cloud

  • Rent For 48h To view
  • Buy Cloud Access For unlimited viewing via different devices
  • Synchronizing In the ReadCube Cloud
  • Printing And saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates



Select

The final prices may differ from the prices shown due To specifics Of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: July 30, 1998
Issue release date: March – June

Number of Print Pages: 16
Number of Figures: 0
Number of Tables: 0

ISSN: 0378-5866 (Print)
eISSN: 1421-9859 (Online)

For additional information: http://www.karger.com/DNE

Abstract

Recent advances in molecular biology have resulted in a number of genetically manipulated mice with defined changes at dopamine receptor and the dopamine transporter (DAT) loci. Mice with targeted mutations at the D1 receptor (D1R) are growth-retarded and show downregulated expression of dynorphin and substance P. Behavioral assessment indicates that mutants have deficiencies in spatial learning and initiating movement, as well as in responding to novel stimuli. D1R mutants do not become locomotor activated with cocaine or show upregulated immediate early gene (IEG) expression, but D2 receptor-dependent IEG changes are intact. Acute cocaine administration increases substance P levels, suggesting that striatal expression of this neuropeptide can be modulated by D1R-independent processes. Failure of locomotor activation is also seen with repeated amphetamine treatment. Surprisingly, D1R-deficient mice retain cocaine-conditioned place preference. In contrast, D2 receptor knockout mice are bradykinetic, show increased striatal enkephalin expression and an absence of opiate rewarding effects. D3 receptor mutants are hyperactive when assessed in an exploratory assay and display reduced anxiety-associated behavior in an elevated plus maze test. The recently described D4 receptor homozygous mutants exhibit a reduction in baseline locomotor activity and were shown to be supersensitive to the locomotor activating effects of alcohol and psychostimulant drugs. As expected, DAT knockout mice are hyperactive and do not respond to cocaine or amphetamine. The observation that D2 and D4 dopamine receptor and DAT mutants show compensatory effects, together with the complicating issue of their hybrid genetic background may temper conclusions regarding the direct effects of the targeted mutation on phenotype.


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: July 30, 1998
Issue release date: March – June

Number of Print Pages: 16
Number of Figures: 0
Number of Tables: 0

ISSN: 0378-5866 (Print)
eISSN: 1421-9859 (Online)

For additional information: http://www.karger.com/DNE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.