Journal Mobile Options
Table of Contents
Vol. 190, No. 2, 2009
Issue release date: July 2009
Section title: Original Paper
Cells Tissues Organs 2009;190:61–68
(DOI:10.1159/000178022)

Effect of Mechanical Stimulation on Osteoblast- and Osteoclast-Like Cells in vitro

Kadow-Romacker A. · Hoffmann J.E. · Duda G. · Wildemann B. · Schmidmaier G.
Center for Musculoskeletal Surgery, Charité – Universitätsmedizin Berlin, and Berlin-Brandenburg Center for Regenerative Therapies, Berlin, Germany

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Accepted: 7/2/2008
Published online: 11/25/2008
Issue release date: July 2009

Number of Print Pages: 8
Number of Figures: 4
Number of Tables: 1

ISSN: 1422-6405 (Print)
eISSN: 1422-6421 (Online)

For additional information: http://www.karger.com/CTO

Abstract

Bone-forming osteoblasts and bone-resorbing osteoclasts play an important role during maintenance, adaptation and healing of bone, and both cell types are influenced by physical activity. The aim of the present study was to investigate the effect of a narrow mechanical stimulation window on osteoblast- and osteoclast-like cells. Primary human cells were cultured on a bone-like structure (dentine) and three-point bending with approximately 1,100 microstrain was applied to the dentine at varying frequencies (0.1 and 0.3 Hz) and duration (1, 3 and 5 min daily over 5 days) resulting in different patterns of mechanical stimulation of osteoblast- and osteoclast-like cells. The longest stimulation (5 min at 0.1 Hz) induced a significant increase in osteoblast alkaline phosphatase activity and a significant decrease in osteoprotegerin (OPG) production, and resulted in a significant increase in the soluble receptor activator of NF-κB ligand (sRANKL)/OPG ratio towards sRANKL in comparison to the unstimulated osteoblast-like cells. All stimulations caused a significant decrease in collagen type 1 synthesis. Stimulation for 1 min at 0.3 Hz decreased the fusion and resorption activity of the osteoclast-like cells. These results demonstrate a direct effect of mechanical stimuli on osteoblast-like cells as well as on osteoclast formation and activity in vitro. The change in the sRANKL/OPG ratio towards the stimulation of osteoclastogenesis stresses the necessity to investigate the effect of the same stimulation parameter on the co-culture of both cell types.

© 2008 S. Karger AG, Basel


  

Author Contacts

Dr. Britt Wildemann
Center for Musculoskeletal Surgery, BCRT, Charité – Universitätsmedizin Berlin
Augustenburger Platz 1
DE–13353 Berlin (Germany)
Tel. +49 30 450 559 618, Fax +49 30 450 559 938, E-Mail britt.wildemann@charite.de

  

Article Information

Accepted after revision: July 2, 2008
Published online: November 25, 2008
Number of Print Pages : 8
Number of Figures : 4, Number of Tables : 1, Number of References : 43

  

Publication Details

Cells Tissues Organs (in vivo, in vitro)

Vol. 190, No. 2, Year 2009 (Cover Date: July 2009)

Journal Editor: Denker H.-W. (Essen), English A.W. (Atlanta, Ga.)
ISSN: 1422-6405 (Print), eISSN: 1422-6421 (Online)

For additional information: http://www.karger.com/CTO


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Accepted: 7/2/2008
Published online: 11/25/2008
Issue release date: July 2009

Number of Print Pages: 8
Number of Figures: 4
Number of Tables: 1

ISSN: 1422-6405 (Print)
eISSN: 1422-6421 (Online)

For additional information: http://www.karger.com/CTO


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.