Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Journal Mobile Options
Table of Contents
Vol. 49, No. 3, 1988
Issue release date: 1988
Section title: Original Paper
Nephron 1988;49:210–218
(DOI:10.1159/000185057)

On the Mechanism of Toluene-Induced Renal Tubular Acidosis

Batlle D.C. · Sabatini S. · Kurtzman N.A.
Departments of Medicine and Nephrology Sections, Northwestern University Medical School, and the Lake Side VA Medical Center, Chicago, Ill., USA; Texas Tech University Health Sciences Center, Lubbock, Tex., USA

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Accepted: September 23, 1987
Published online: December 09, 2008
Issue release date: 1988

Number of Print Pages: 9
Number of Figures: 0
Number of Tables: 0

ISSN: 1660-8151 (Print)
eISSN: 2235-3186 (Online)

For additional information: http://www.karger.com/NEF

Abstract

This study was aimed to investigate the pathogenesis of toluene-induced renal tubular acidosis (RTA). In 5 individuals addicted to toluene sniffing we documented the occurrence of hypokalemia and hyperchloremic metabolic acidosis associated with inability to lower urine pH below 5.5 (6.06 ± 0.24). Overall kidney bicarbonate reabsorption was normal or enhanced, a feature characteristic of the distal form of RTA (DRTA). These findings resemble those found during the administration of amphotericin B, a drug felt to cause DRTA by increasing hydrogen ion (H+) back-diffusion in the collecting tubule. In toluene sniffers, the urine pCO2 measured in a highly alkaline urine was reduced (47 ± 8.8 mm Hg), suggesting a decrease in the rate of collecting tubule H+ secretion rather than H+ back-diffusion. To investigate these two mechanisms of altered distal acidification more directly we studied the effect of toluene on acidification by the urinary turtle bladder, an epithelial analogue of the mammalian collecting tubule. In this preparation, toluene resulted in a decrease in the rate of H+ secretion measured by either the pH stat technique or the reverse short circuit current. When mucosal pH was progressively lowered to examine H+ secretion against an H+ gradient, toluene-treated bladders displayed a significant decrease in proton conductance but the lowest mucosal pH required to nullify H+ secretion, (MpH) JH = O, was not different from that of control bladders (4.05 ± 0.29 and 3.90 ± 0.13, respectively). In contrast, in amphotericin B-treated bladders (MpH) JH =·was 5.15 ± 0.39, a value more than 1 pH unit higher than that of control and toluene-treated bladders (p < 0.05). Thus, amphotericin B, but not toluene, reduced the pH gradient that could be generated across the turtle bladder. These findings suggest that toluene, unlike amphotericin B, does not cause H+ back-diffusion. Decreased conductance of protons through the active transport pathway is the mechanism that best explains the toluene-induced defect in distal acidification.

© 1988 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Accepted: September 23, 1987
Published online: December 09, 2008
Issue release date: 1988

Number of Print Pages: 9
Number of Figures: 0
Number of Tables: 0

ISSN: 1660-8151 (Print)
eISSN: 2235-3186 (Online)

For additional information: http://www.karger.com/NEF


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.