Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Journal Mobile Options
Table of Contents
Vol. 150, No. 3, 2009
Issue release date: October 2009
Section title: Original Paper
Int Arch Allergy Immunol 2009;150:210–220
(DOI:10.1159/000222673)

BCG Priming of Dendritic Cells Enhances T Regulatory and Th1 Function and Suppresses Allergen-Induced Th2 Function in vitro and in vivo

Ahrens B.a · Grüber C.a · Rha R.-D.a · Freund T.a · Quarcoo D.a, b · Awagyan A.a · Hutloff A.c · Dittrich A.M.a, d · Wahn U.a · Hamelmann E.a, e
aDepartment of Paediatric Pneumology and Immunology, and bInstitute of Occupational Medicine, Charité Universitätsmedizin Berlin, and cMolecular Immunology, Robert Koch Institute, Berlin, dNachwuchsgruppe SFB 587, Hannover Medical University, Hannover, and eUniversity Children Hospital, Ruhr University, Bochum, Germany

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: June 06, 2008
Accepted: January 14, 2009
Published online: June 03, 2009
Issue release date: October 2009

Number of Print Pages: 11
Number of Figures: 9
Number of Tables: 0

ISSN: 1018-2438 (Print)
eISSN: 1423-0097 (Online)

For additional information: http://www.karger.com/IAA

Abstract

Background: The inverse correlation of mycobacterial infection with asthma prevalence and the inhibitory effects of vaccination with Bacille Calmette-Guérin (BCG) on airway hyperreactivity in asthma models suggest modulation of dendritic cell (DC) and T cell functions by mycobacterial compounds. Methods: To delineate these immunological effects, the immunogenicity of BCG Copenhagen, BCG Chicago and BCG Pasteur was compared in a mouse model. Bone marrow-derived dendritic cells (BMDCs) from BALB/c mice were stimulated with ovalbumin (OVA) with or without BCG. BMDCs were phenotypically characterized by flow cytometry, and we used ELISA to measure the cytokine production of BMDCs as well as of co-cultivated allergen-specific T cells in response to OVA-pulsed. Immunomodulatory effects of BCG were studied in a model of allergic airway inflammation by adoptive transfer of allergen-pulsed BMDCs. Results: Immunomodulation with BCG induced production of IL-10 and IL-12 by BMDCs. Co-cultured allergen-specific T cells produced less IL-5, IL-13 and IFN-γ but more IL-10. Also the number of FoxP3+ regulatory T cells was enhanced. Strongest effects were seen with BCG Chicago and BCG Pasteur. In vivo, administration of BCG modulated OVA-pulsed BMDCs then reduced eosinophilic airway inflammation but enhanced infiltration with granulocytes. Airway hyperreactivity and mucus production were reduced and more FoxP3+ T cells were observed. Conclusion: BCG-induced suppression of Th2-type allergic airway inflammation was associated with enhancement of regulatory T cell function but also of Th1-associated neutrophilic airway inflammation. These findings raise concerns regarding the safety profile of BCG as a potential tool for prevention and therapy of allergic airway disease.

© 2009 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: June 06, 2008
Accepted: January 14, 2009
Published online: June 03, 2009
Issue release date: October 2009

Number of Print Pages: 11
Number of Figures: 9
Number of Tables: 0

ISSN: 1018-2438 (Print)
eISSN: 1423-0097 (Online)

For additional information: http://www.karger.com/IAA


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.