Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Journal Mobile Options
Table of Contents
Vol. 35, No. 4, 1998
Issue release date: July – August
Section title: Research Paper
J Vasc Res 1998;35:274–284
(DOI:10.1159/000025594)

Bioassay of an Endothelium-Derived Hyperpolarizing Factor from Bovine Coronary Arteries: Role of a Cytochrome P450 Metabolite

Gebremedhin D. · Harder D.R. · Pratt P.F. · Campbell W.B.
Departments of Physiology, Pharmacology & Toxicology and The Cardiovascular Research Center, Medical College of Wisconsin, and The Clement Zablocki Medical Center, Milwaukee, Wisc., USA

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Research Paper

Published online: August 07, 1998
Issue release date: July – August

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 0

ISSN: 1018-1172 (Print)
eISSN: 1423-0135 (Online)

For additional information: http://www.karger.com/JVR

Abstract

An endothelium-derived hyperpolarizing factor (EDHF) mediates a part of the vasodilatory action of bradykinin. A bioassay method was developed to investigate the properties of EDHF on bovine coronary arterial smooth muscle cells. Cannulated bovine coronary arteries with an intact endothelium that were treated with indomethacin and NG-nitro-L-arginine methyl ester served as the EDHF donor. The effect of the donor vessel perfusate was examined on a 240 pS single-channel calcium (Ca2+)-activated potassium (K+) current (KCa) and resting membrane potential in recipient coronary arterial smooth muscle cells. The open state probability (NPo) of the channel averaged 0.011 ± 0.003 during basal perfusate flow. After stimulation of the donor vessels with bradykinin (10–10–10–6 M), the perfusate induced a 1.2- to 5-fold increase in the NPo (n = 7, p < 0.001). This increase in channel activity was attenuated by either removing the endothelium of the donor arterial segment or upon inhibition of cytochrome P450 in the donor arterial segment with the combination of 17-octadecynoic acid and miconazole. The resting cell membrane averaged –60 ± 2 mV, and hyperpolarized to –69 ± 1.5 mV (n = 6, p < 0.05) in response to the perfusate following stimulation of the donor vessel with bradykinin. Addition of 14,15-epoxyeicosatrienoic acid mimicked the effects of the perfusate and increased the NPo of the KCa channel from 0.01 ± 0.001 to 0.05 ± 0.001. These findings suggest that bradykinin stimulates the release of a transferable endothelial factor that activates KCa channels and hyperpolarizes coronary arterial smooth muscle cell membranes. These findings support the hypothesis that coronary arteries release an EDHF which is a cytochrome P450 metabolite of arachidonic acid.


Article / Publication Details

First-Page Preview
Abstract of Research Paper

Published online: August 07, 1998
Issue release date: July – August

Number of Print Pages: 11
Number of Figures: 0
Number of Tables: 0

ISSN: 1018-1172 (Print)
eISSN: 1423-0135 (Online)

For additional information: http://www.karger.com/JVR


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.