Cover

Experimental Models for Renal Diseases

Pathogenesis and Diagnosis

Editor(s): Herrera G.A. (Tempe, Ariz.) 
Table of Contents
Vol. 169, 2011
Section title: Paper
Herrera GA (ed): Experimental Models for Renal Diseases: Pathogenesis and Diagnosis. Contrib Nephrol. Basel, Karger, 2011, vol 169, pp 270–285
(DOI:10.1159/000320212)

HIV-Associated Nephropathy: Experimental Models

Avila-Casado M.C. · Fortoul T.I. · Chugh S.S.
aDepartment of Pathology, Instituto Nacional de Cardiologia Ignacio Chavez, Department of Cellular and Tissue Biology, and bBasic Sciences Coordinator, Universidad Nacional Autonoma de Mexico, School of Medicine, Mexico City, Mexico; cGlomerular Disease Therapeutics Laboratory, University of Alabama, Birmingham, Ala., USA

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Complete book

  • Immediate access to all parts of this book
  • Cover-to-cover formats may be available
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restriction for personal use
read more

Pricing depends on hard-cover price


Select


Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: 1/20/2011
Cover Date: 2011

Number of Print Pages: 16
Number of Figures: 7
Number of Tables: 1

ISBN: 978-3-8055-9537-7 (Print)
eISBN: 978-3-8055-9538-4 (Online)

Abstract

Since 1984 reports of renal involvement in AIDS patients have been presented in the literature. Different forms of renal disease were noted in the AIDS population including those related to systemic and local renal infections, tubulointerstitial disease, renal involvement by neoplasm and glomerular disease including collapsing glomerulopathy (CG). HIV-associated nephropathy (HIVAN) has been demonstrated to be more severe in the black population. HIVAN is the most common cause of renal failure in HIV-1–seropositive patients. The term HIVAN is reserved for the typical histopathological form of focal and segmental glomerulosclerosis (FSGS) characterized by the findings of coexistent glomerular and severe tubulointerstitial disease. In both humans and the murine model, glomerular lesions include FSGS, glomerular collapse and podocyte hyperplasia. The tubulointerstitial damage as well as the glomerular collapse can also be seen in non-HIV primary collapsing GN, raising the question of common mechanisms to HIV and other non-identified viral agents related to the development of the disease. Although controversial, increasing evidence supports a direct effect of the virus on renal cells either as a result of exposure to viral proteins or direct renal parenchyma infection. The use of a HIV-1 transgenic mouse model has demonstrated a direct etiologic link between HIV-1 expression in kidney and the development of HIVAN with unique viral-host interactions, which depend at the same time on stimulating features of the virus and the individual nature of the host response. The infection of renal cells by HIV-1 could be detected by reverse transcription-polymerase chain reaction (RT-PCR) of gag RNA at a low level. Some studies using an HIV-1 transgenic mouse model have demonstrated that expression of HIV- 1 in the kidney is required for the development of HIVAN. The final common pathwayin the development of HIV-associated nephropathy islikely to involve alterations in the patterns of gene expressionof renal parenchyma cells by cytokines and growthfactors, leading to interstitial fibrosis and enhanced glomerularmatrix synthesis. The nature of the host response toviral infection is critical to the development of nephropathy.HLA-linked responses particular to a subset of blacks may explain some of the epidemiologic features of HIVAN. There may also be biological heterogeneity in the strains of HIV-1 that could account for a particular renotropic strain. HIV strains from different parts of the world may vary by as much as 15% at the level of nucleotide sequence. The infectivity of human immunodeficiency virus (HIV-1) in human glomerular cells has been evaluated by exposing homogeneous cultures of human glomerular capillary endothelial, mesangial and epithelial cells to HIV in vitro. The mechanism of access of HIV into glomerular endothelial and mesangial cells is unknown up to now; HIV is generally infectious for cells expressing the CD4 antigen in their cell membrane. Other modes of HIV entry into cells independent of the CD4 receptor are possible through mechanisms involving Fc-receptors or coinfection with other enveloped viruses such as HTLV-l. Our understanding of the pathogenesis of HIVAN has been aided by the development of a transgenic model. The curious fact that only 3 of 8 founded transgenic lines developed nephropathy emphasizes that the expression of viral gene products per se is not sufficient to produce nephropathy. Human renal epithelium does not express CD4 receptors and in vitro attempts to infect glomerular epithelial cells using laboratory strains of HIV-1 have proven fruitless. The striking morphologic and phenotypic similarities between HIVAN and collapsing idiopathic FSGS raise the question whether the altered podocyte gene expression in collapsing idiopathic FSGS may also be due to a viral infection. This hypothesis is further supported by de novo occurrence of collapsing idiopathic FSGS in immunosuppressed renal transplantation patients and by epidemiologic data. In conclusion, there are likely to be common mechanisms in the pathogenesis for collapsing idiopathic glomerulosclerosis and HIVAN. A primary injury of the podocyte leading to dysregulation of the cellular phenotype appears to mediate the glomerular tuft collapse in both conditions. Primary collapsing glomerulopathy recurs post-transplantation, raising the possibility of circulating factors implicated in the pathogenesis of visceral epithelial cell damage in steroid-resistant minimal change disease or recurrent FSGS. Recurrence of CG can occur hours after transplantation, suggesting that the plasma of CG patients contains one or more factors capable of inducing proteinuria due to the damage of the podocyte that results in the increase in glomerular permeability. In a rat model of CG developed by our group, the injection of serum from CG patients resulted in proteinuria, glomerular tuft retraction and podocyte damage at the ultrastructural level (visceral epithelial cell footprocess effacement). No ultrastructural or light microscopy abnormalities were seen in rats injected with serum from non-collapsing FSGS or healthy subjects. Based on the experience of our group, circulating factors play a dominant role in the pathogenesis of idiopathic CG.


  

Author Contacts

M.C. Avila-Casado, MD, PhD, Chief Department of Pathology, Instituto Nacional de Cardiologia Ignacio Chavez, Juan Badiano 1, Col. Seccion XVI, Mexico City, 14050 (Mexico), Tel. +52 55 55 73 2911, Ext. 1217, Fax +52 55 5606 1422, E-Mail mcavilacasado@gmail.com

  

Article Information

Published online: January 20, 2011
Number of Print Pages : 16

  

Publication Details

Book Serie: Contributions to Nephrology, Vol. 169, Year 2011

Editor(s): Ronco, C. (Vicenza)
ISSN: 0302-5144 (Print), eISSN: 1662-2782 (Online)

For additional information:
http://content.karger.com/ProdukteDB/produkte.asp?issn=0302-5144

Book Title: Experimental Models for Renal Diseases (Pathogenesis and Diagnosis)

Editor(s): Herrera GA (ed)

For additional information:
http://content.karger.com/ProdukteDB/produkte.asp?issn=0302-5144&volume=169


Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: 1/20/2011
Cover Date: 2011

Number of Print Pages: 16
Number of Figures: 7
Number of Tables: 1

ISBN: 978-3-8055-9537-7 (Print)
eISBN: 978-3-8055-9538-4 (Online)


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.