Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Table of Contents
Vol. 57, No. 5, 2011
Issue release date: August 2011
Section title: Experimental Section / Mini-Review
Free Access
Gerontology 2011;57:435–443

Reactive Metabolites and AGE/RAGE-Mediated Cellular Dysfunction Affect the Aging Process – A Mini-Review

Fleming T.H. · Humpert P.M. · Nawroth P.P. · Bierhaus A.
Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
email Corresponding Author

Angelika Bierhaus, PhD

Department of Medicine I and Clinical Chemistry

Im Neuenheimer Feld 410, DE–69120 Heidelberg (Germany)

Tel. +49 6221 564 752, Fax +49 6221 564 754

E-Mail angelika_bierhaus@med.uni-heidelberg.de

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


Aging is a dynamic process in which its rate and subsequent longevity of an organism are dependent upon the balance between the reactive intermediates of normal cellular metabolism and the ability of the body to reduce these by-products through a multifaceted antioxidant defence system. Every disturbance of this balance constitutes a clear and present danger to the macromolecular integrity of the body. When defence mechanisms become diminished or impaired, the resulting imbalance results in accumulation of endogenous agents, such as reactive oxygen and carbonyl species, and a state of increased cellular stress, which can accelerate the rate of aging. Glycation is the non-enzymatic glycosylation of proteins, nucleotides and lipids by saccharide derivatives. Glucose and other reducing sugars are important glycating agents, but the most reactive physiological relevant glycating agents, are the dicarbonyls, in particular methylglyoxal. Endogenously formed dicarbonyl compounds can react with proteins to form advanced glycation endproducts (AGEs). Experimental models have recently provided evidence that reduced detoxification of AGE precursors by the glyoxalase system, engagement of the cellular receptor RAGE and RAGE-dependent sustained activation of the pro-inflammatory transcription factor nuclear factor ĸB might significantly contribute to the rate of aging and the onset of age-related neurodegenerative, musculoskeletal and vascular diseases.

© 2010 S. Karger AG, Basel

Article / Publication Details

First-Page Preview
Abstract of Experimental Section / Mini-Review

Received: January 27, 2010
Accepted: August 02, 2010
Published online: October 21, 2010
Issue release date: August 2011

Number of Print Pages: 9
Number of Figures: 1
Number of Tables: 0

ISSN: 0304-324X (Print)
eISSN: 1423-0003 (Online)

For additional information: http://www.karger.com/GER

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.