Journal Mobile Options
Table of Contents
Vol. 25, No. 4, 2012
Issue release date: June 2012
Section title: Original Paper
Skin Pharmacol Physiol 2012;25:219–226
(DOI:10.1159/000338976)

Safety Assessment by Multiphoton Fluorescence/Second Harmonic Generation/Hyper-Rayleigh Scattering Tomography of ZnO Nanoparticles Used in Cosmetic Products

Darvin M.E.a · König K.b · Kellner-Hoefer M.b · Breunig H.G.b · Werncke W.a · Meinke M.C.a · Patzelt A.a · Sterry W.a · Lademann J.a
aCenter of Experimental and Cutaneous Physiology (CCP), Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Berlin, and bJenLab GmbH, Jena, Germany

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.



Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: 12/29/2011 2:20:19 PM
Accepted: 4/17/2012
Published online: 5/30/2012
Issue release date: June 2012

Number of Print Pages: 8
Number of Figures: 4
Number of Tables: 0

ISSN: 1660-5527 (Print)
eISSN: 1660-5535 (Online)

For additional information: http://www.karger.com/SPP

Abstract

Zinc oxide nanoparticles (ZnO NPs) are commonly used as UV filters in commercial sunscreen products. Their penetration into the skin is intensively discussed in the literature. In the present in vivo study, penetration of ZnO NPs (30 nm in size) into human skin was investigated by multiphoton tomography. Based on the non-linear effects of a second harmonic generation and hyper-Rayleigh scattering, the distribution of ZnO NPs in the horny layers of the epidermis, as well as the furrows, wrinkles and orifice of the hair follicles was analyzed. This method permitted distinguishing between the particulate and dissolved forms of Zn. A detection limit of 0.08 fg/µm3 was estimated. Taking advantage of this sensitivity, it was clearly shown that ZnO NPs penetrate only into the outermost layers of stratum corneum, furrows and into the orifices of the hair follicles and do not reach the viable epidermis.

© 2012 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: 12/29/2011 2:20:19 PM
Accepted: 4/17/2012
Published online: 5/30/2012
Issue release date: June 2012

Number of Print Pages: 8
Number of Figures: 4
Number of Tables: 0

ISSN: 1660-5527 (Print)
eISSN: 1660-5535 (Online)

For additional information: http://www.karger.com/SPP


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.