Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Original Paper

Decreased Glomerular Expression of Agrin in Diabetic Nephropathy and Podocytes, Cultured in High Glucose Medium

Yard B.A.a · Kahlert S.b · Engelleiter R.a · Resch S.a · Waldherr R.c · Groffen A.J.d · van den Heuvel L.P.W.J.d · van der Born J.e · Berden J.H.M.e · Kröger S.f · Hafner M.b · van der Woude F.J.a

Author affiliations

aV. Medizinische Universitätsklinik, Klinikum Mannheim, University of Heidelberg; bFachhochschule Mannheim; cGemeinschaftspraxis für Pathologie, Heidelberg, Germany; Departments of dPediatrics and eNephrology, University Hospital, Nijmegen, The Netherlands and fMax Planck Institut für Hirnforschung, Frankfurt, Germany

Related Articles for ""

Exp Nephrol 2001;9:214–222

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

For eJournal Archive and eJournal Backfiles information please contact service@karger.com

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: April 23, 2001
Issue release date: May – June

Number of Print Pages: 9
Number of Figures: 5
Number of Tables: 1


eISSN: 1660-2129 (Online)

For additional information: http://www.karger.com/NEE

Abstract

Aim: A decrease in glomerular heparan sulfate (HS) proteoglycan (PG), without apparent decrease in HSPG core protein expression, has been reported to occur in diabetic nephropathy (DN). In most studies however, agrin, the major HSPG core protein in the glomerular basement membrane, has not been studied. This prompted us to study the glomerular expression of agrin in parallel to the expression of HS-glycosaminoglycans (GAG) in biopsies of patients with DN. Furthermore, the influence of glucose on agrin production in cultured podocytes and the expression of agrin in fetal kidneys was investigated. Methods: Cryostat sections of renal biopsies from patients with DN (n = 8) and healthy controls (HC, n = 8), were stained for agrin and HS-GAG. Sections of fetal kidneys were double stained for agrin and CD35 or CD31. Stainings were performed by indirect immunofluorescence (IIF). The production of agrin by cultured human podocytes was tested by ELISA and IIF. Results: The expression of agrin, detected by AS46, was significantly reduced in biopsies from patients with DN compared to HC (p < 0.01). Similar findings were observed when monoclonal antibody JM72 was used (p < 0.05). In addition, a significant reduction in the glomerular expression of HS-GAG was detected with JM403 in these patients (p < 0.01). Agrin is expressed in cultured podocytes, the expression hereof was reduced when the cells were cultured in the presence of 25 mM D-glucose (p < 0.01). In biopsies of human fetal kidneys, glomerular expression of agrin coincided with the expression of CD31. In early stages of glomerular differentiation there was a strong staining for agrin and CD31 while CD35 was only slightly positive. Conclusions: Our data argue against a selective dysregulation in HSPG sulfation in DN, but suggest a pivotal role for hyperglycemia in the downregulation of agrin core protein production.

© 2001 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: April 23, 2001
Issue release date: May – June

Number of Print Pages: 9
Number of Figures: 5
Number of Tables: 1


eISSN: 1660-2129 (Online)

For additional information: http://www.karger.com/NEE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.