Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Journal Mobile Options
Table of Contents
Vol. 36, Suppl. 1, 1999
Issue release date: August 1999
Section title: Paper
J Vasc Res 1999;36(suppl 1):15–23
(DOI:10.1159/000054070)

Adhesion Molecule Expression in Postischemic Microvascular Dysfunction: Activity of a Micronized Purified Flavonoid Fraction

Korthuis R.J. · Gute D.C.
Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, School of Medicine in Shreveport, Shreveport, La., USA

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: August 27, 1999
Issue release date: August 1999

Number of Print Pages: 9
Number of Figures: 3
Number of Tables: 0

ISSN: 1018-1172 (Print)
eISSN: 1423-0135 (Online)

For additional information: http://www.karger.com/JVR

Abstract

Ischemia and reperfusion (I/R) induces neutrophil infiltration in skeletal muscle that is localized to the ischemic region. To transmigrate at ischemic regions, granulocytes must first arrest in the postcapillary venular segment of the microcirculation. Initially, leukocytes roll along the endothelium of these venules, a weak adhesive interaction that is mediated by the selectins (L-, E-, and P-selectin). Leukocyte rolling functions to slow the neutrophil during its transit through the microcirculation, thereby allowing it to monitor its local environment for the presence of activating factors arising from the ischemic tissues. When activated, the rolling granulocyte is rendered capable of forming the stronger adhesive interactions that allow the cell to become arrested in postcapillary venules in the ischemic region. These adhesive interactions are mediated by a leukocyte glycoprotein complex designated CD11/CD18 and intercellular adhesion molecule-1 (ICAM-1) expressed on endothelial cells. The stationary neutrophil uses the gradient in concentration of soluble chemoattractants liberated from ischemic tissues as a directional cue to move from the vascular to extravascular compartment, being guided in its transit across the endothelium by interactions with platelet endothelial cell adhesion molecule-1 (PECAM-1), an adhesive molecule localized to the interendothelial cleft. This paper reviews current understanding of the mechanisms underlying the establishment of leukocyte/endothelial cell interactions in postischemic skeletal muscle in terms of specific adhesion molecules that participate in neutrophil sequestration after I/R. Discovery of the molecular determinants of neutrophil/endothelial cell adhesion has uncovered potential mechanisms whereby agents exhibiting anti-adhesive properties may act. The micronized purified flavonoid fraction (450 mg diosmin, 50 mg hesperidin) prevents I/R-induced leukocyte adhesion in skeletal muscle. This anti-adhesive effect appears to be mediated at least in part by inhibition of induced expression of ICAM-1.


Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: August 27, 1999
Issue release date: August 1999

Number of Print Pages: 9
Number of Figures: 3
Number of Tables: 0

ISSN: 1018-1172 (Print)
eISSN: 1423-0135 (Online)

For additional information: http://www.karger.com/JVR


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.