Login to MyKarger

New to MyKarger? Click here to sign up.



Login with Facebook

Forgot your password?

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login
(Shibboleth or Open Athens)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Original Paper

Prey Capture by Larval Zebrafish: Evidence for Fine Axial Motor Control

Borla M.A. · Palecek B. · Budick S. · O’Malley D.M.

Author affiliations

Department of Biology, Northeastern University, Boston, Mass., USA

Related Articles for ""

Brain Behav Evol 2002;60:207–229

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 9.00 *
EUR 8.00 *
USD 9.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: May 01, 2002
Accepted: August 14, 2002
Published online: December 02, 2002
Issue release date: 2002

Number of Print Pages: 23
Number of Figures: 12
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE

Abstract

Swimming and turning behaviors of larval zebrafish have been described kinematically, but prey capture behaviors are less well characterized. High-speed digital imaging was used to record the axial kinematics of larval zebrafish as they preyed upon paramecia and also during other types of swimming. In all types of swim bouts, a series of traveling waves of bending is observed and these bends propagate along the trunk in the rostral to caudal direction. The prey capture swim bouts appeared to be more complex than other swim patterns examined. In the capture swim bouts, the initial bends were of low amplitude and were most prominent at far-caudal locations during each individual traveling wave of bending. Later bends in the bout (occurring just prior to prey capture) appeared to originate more rostrally and were of larger amplitude. These changes in bending pattern during capture swims were accompanied by a marked increase in tail-beat frequency. Associated with these axial kinematics were changes in heading and an abrupt increase in velocity close to the moment of prey capture. These changing patterns of bending suggest precise, bend-to-bend, neural control over both the timing and the rostral-caudal locus of bending. This degree of ‘fine axial motor control’ has not previously been described in the teleost behavioral literature and is notable because it occurs in larval zebrafish, where descending control signals are funneled through the roughly three-hundred neurons that project from brain into spinal cord. These findings will necessitate a significant increase in the complexity of current models of descending motor control in fishes.

© 2002 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: May 01, 2002
Accepted: August 14, 2002
Published online: December 02, 2002
Issue release date: 2002

Number of Print Pages: 23
Number of Figures: 12
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.