Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Table of Contents
Vol. 5, No. 1, 2003
Issue release date: March 2003
Section title: Research Article
J Mol Microbiol Biotechnol 2003;5:46–56
(DOI:10.1159/000068724)

Metagenomes of Complex Microbial Consortia Derived from Different Soils as Sources for Novel Genes Conferring Formation of Carbonyls from Short-Chain Polyols on Escherichia coli

Knietsch A.a · Waschkowitz T.a · Bowien S.a · Henne A.b · Daniel R.a
aAbteilung Allgemeine Mikrobiologie and bGöttingen Genomics Laboratory, Institut für Mikrobiologie und Genetik der Georg-August-Universität, Göttingen, Germany

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Research Article

Received: November 05, 2002
Accepted: November 07, 2002
Published online: March 31, 2003
Issue release date: March 2003

Number of Print Pages: 11
Number of Figures: 2
Number of Tables: 3

ISSN: 1464-1801 (Print)
eISSN: 1660-2412 (Online)

For additional information: http://www.karger.com/MMB

Abstract

Metagenomic DNA libraries from three different soil samples (meadow, sugar beet field, cropland) were constructed. The three unamplified libraries comprised approximately 1,267,000 independent clones and harbored approximately 4.05 Gbp of environmental DNA. Approximately 300,000 recombinant Escherichia coli strains of each library per test substrate were screened for the production of carbonyls from short-chain (C2 to C4) polyols such as 1,2-ethanediol, 2,3-butanediol, and a mixture of glycerol and 1,2-propanediol on indicator agar. Twenty-four positive E. coli clones were obtained during the initial screen. Fifteen of them contained recombinant plasmids, designated pAK201–215, which conferred a stable carbonyl-forming phenotype on E. coli. Sequencing revealed that the inserts of pAK201–215 encoded 26 complete and 14 incomplete predicted protein-encoding genes. Most of these genes were similar to genes with unknown functions from other microorganisms or unrelated to any other known gene. The further analysis was focused on the 7 plasmids (pAK204, pAK206, pAK208, and pAK210–213) recovered from the positive clones, which exhibited an NAD(H)-dependent alcohol oxidoreductase activity with polyols or the correlating carbonyls as substrates in crude extracts. Three genes (orf6, orf24, and orf25) conferring this activity were identified during subcloning of the inserts of pAK204, pAK211, and pAK212. The sequences of the three deduced gene products revealed no significant similarities to known alcohol oxidoreductases, but contained putative glycine-rich regions, which are characteristic for binding of nicotinamide cofactors.

© 2003 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Research Article

Received: November 05, 2002
Accepted: November 07, 2002
Published online: March 31, 2003
Issue release date: March 2003

Number of Print Pages: 11
Number of Figures: 2
Number of Tables: 3

ISSN: 1464-1801 (Print)
eISSN: 1660-2412 (Online)

For additional information: http://www.karger.com/MMB


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.