Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Table of Contents
Vol. 61, No. 1, 2003
Issue release date: February 2003
Section title: Original Paper
Brain Behav Evol 2003;61:6–27
(DOI:10.1159/000068877)

Neuronal Classes in the Isocortex of a Monotreme, the Australian Echidna (Tachyglossus aculeatus)

Hassiotis M. · Ashwell K.W.S.
Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia

Do you have an account?

Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



Login Information





Contact Information










I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

CHF 9.00 *
EUR 8.00 *
USD 9.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.


Save over 20% compared to the individual article price.
Learn more

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00


Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: June 17, 2002
Accepted: October 08, 2002
Published online: March 13, 2003
Issue release date: February 2003

Number of Print Pages: 22
Number of Figures: 10
Number of Tables: 5

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE

Abstract

We have used Valverde-Golgi and Golgi-Colonnier techniques to analyze cortical neuronal morphology in four regions (frontal cortex, primary motor cortex, primary somatosensory cortex, primary visual cortex) of the isocortex of the echidna (Tachyglossus aculeatus). Eight classes of neurons could be identified – pyramidal, spinous bipolar, aspinous bipolar, spinous bitufted, aspinous bitufted, spinous multipolar, aspinous multipolar and neurogliaform. All except the pyramidal neurons were morphologically similar to neuronal classes seen in eutherian and metatherian isocortex. Pyramidal neurons made up a small proportion of all cortical neurons encountered in our preparations of echidna cortex (34% in visual cortex, 35% in somatosensory cortex, 41% in frontal cortex and 49% in motor cortex) compared to both reported values in eutherian cortex and values we found in rat cortex impregnations prepared in an identical fashion to the echidna material (75% in rat motor and 78% in rat somatosensory cortex). Many pyramidal neurons in the echidna isocortex were atypical (30–42% depending on region) with inverted somata, short or branching apical dendrites and/or few basal dendrites, very different from the usual pyramidal neuron morphology in eutherian cortex. Dendritic spine density on apical and basal dendrites of echidna pyramidal neurons in somatosensory cortex and apical dendrites of motor cortex pyramidal neurons was also lower than that found in the rat. The present findings are consistent with both pyramidal neurons and the many diverse types of non-pyramidal neurons having already emerged as discrete morphological entities very early in mammalian cortical evolution, at the time of divergence of the therian and prototherian lineage.

© 2003 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Received: June 17, 2002
Accepted: October 08, 2002
Published online: March 13, 2003
Issue release date: February 2003

Number of Print Pages: 22
Number of Figures: 10
Number of Tables: 5

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.