Recent studies have shown a protection from cerebral hypoxic-ischemic (HI) brain damage in the immature rat following a prior systemic hypoxic exposure when compared with those not exposed previously. To investigate the mechanism(s) of hypoxic preconditioning, brain glycogen and high-energy phosphate reserves were measured in naïve and preconditioned rat pups subjected to HI. Groups in this study included untouched (naïve) controls, preconditioned controls (i.e., hypoxia only), preconditioned with HI insult, and naïve pups with HI insult. Hypoxic preconditioning was achieved in postnatal-day-6 rats subjected to 8% systemic hypoxia for 2.5 h at 37°C. Twenty-four hours later, they were subjected to unilateral common carotid artery ligation and systemic hypoxia with 8% oxygen at 37°C for 90 min. Animals were allowed to recover from HI for up to 24 h. At specific intervals, animals in each group were frozen in liquid nitrogen for determination of cerebral metabolites. Preconditioned animals showed a significant increase in brain glycogen 24 h following the initial hypoxic exposure, corresponding to the beginning of the HI insult. Measurement at the end of 90 min of HI showed a depletion of high-energy phosphates, ATP and phosphocreatine, in all animals although ATP remained significantly higher in the preconditioned animals. Thus, the energy from increased glycogen following preconditioning slowed high-energy phosphate depletion during HI, thereby allowing for long-term protection.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.