Journal Mobile Options
Table of Contents
Vol. 64, No. 3, 2004
Issue release date: September 2004
Section title: Paper
Brain Behav Evol 2004;64:198–206
(DOI:10.1159/000079747)

Taste Buds: Development and Evolution

Northcutt R.G.
Neurobiology Unit, Scripps Institution of Oceanography and Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, Calif., USA

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 9.00
Account: USD 8.00

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: 9/7/2004

Number of Print Pages: 9
Number of Figures: 4
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE

Abstract

The gustatory system in vertebrates comprises peripheral receptors (taste buds), innervated by three cranial nerves (VII, IX, and X), and a series of central neural centers and pathways. All vertebrates, with the exception of hagfishes, have taste buds. These receptors vary morphologically in different vertebrates but usually consist of at least four types of cells (dark, light, basal, and stem cells). An out-group analysis indicates that taste buds were restricted to the oropharynx, primitively, and that external taste buds, distributed over the head and, in some cases, even the trunk, evolved a number of times independently. The sensory neurons of the cranial nerves that innervate taste buds are believed to arise from epibranchial placodes, which are induced by pharyngeal endoderm, but it has never been demonstrated experimentally that these sensory neurons do, in fact, arise from these placodes. Although many details of the development of the innervation of taste buds are still unknown, it is now clear that taste buds are induced from either ecto- or endodermal epithelia, rather than arising from either placodes or neural crest. At present, there are two developmental models of taste bud induction: The neural induction model claims that peripheral nerve fibers induce taste buds, whereas the early specification model claims that oropharyngeal epithelium is specified by or during gastrulation and that taste buds arise from cell-cell interactions within the specified epithelium. There is now substantial evidence that the early specification model best describes the induction of taste buds.


  

Author Contacts

R. Glenn Northcutt
Department of Neurosciences, 0201, University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0201 (USA)
Tel. +1 858 534 5612, Fax +1 858 534 5622, E-Mail rgnorthcutt@ucsd.edu

  

Article Information

Number of Print Pages : 9
Number of Figures : 4, Number of Tables : 0, Number of References : 48

  

Publication Details

Brain, Behavior and Evolution

Vol. 64, No. 3, Year 2004 (Cover Date: Released September 2004)

Journal Editor: Walter Wilczynski, Austin, Tex.
ISSN: 0006–8977 (print), 1421–9743 (Online)

For additional information: http://www.karger.com/bbe


Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: 9/7/2004

Number of Print Pages: 9
Number of Figures: 4
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.