Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Table of Contents
Vol. 1, No. 2-3, 2004
Issue release date: October 2004
Section title: Review
Neurodegenerative Dis 2004;1:71–87

The Role of Ubiquitin-Protein Ligases in Neurodegenerative Disease

Ardley H.C. · Robinson P.A.
Molecular Medicine Unit, University of Leeds, St. James’s University Hospital, Leeds, UK
email Corresponding Author

Helen C. Ardley

Molecular Medicine Unit, University of Leeds, Level 6 Clinical Sciences Building

St. James’s University Hospital

Leeds LS9 7TF (UK)

Tel. +44 113 206 5677, Fax +44 113 244 4475, E-Mail h.c.ardley@leeds.ac.uk

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


Alzheimer’s disease and Parkinson’s disease are the most common neurodegenerative conditions associated with the ageing process. The pathology of these and other neurodegenerative disorders, including polyglutamine diseases, is characterised by the presence of inclusion bodies in brain tissue of affected patients. In general, these inclusion bodies consist of insoluble, unfolded proteins that are commonly tagged with the small protein, ubiquitin. Covalent tagging of proteins with chains of ubiquitin generally targets them for degradation. Indeed, the ubiquitin/proteasome system (UPS) is the major route through which intracellular proteolysis is regulated. This strongly implicates the UPS in these disease-associated inclusions, either due to malfunction (of specific UPS components) or overload of the system (due to aggregation of unfolded/mutant proteins), resulting in subsequent cellular toxicity. Protein targeting for degradation is a highly regulated process. It relies on transfer of ubiquitin molecules to the target protein via an enzyme cascade and specific recognition of a substrate protein by ubiquitin-protein ligases (E3s). Recent advances in our knowledge gained from the Human Genome Mapping Project have revealed the presence of potentially hundreds of E3s within the human genome. The discovery that parkin, mutations in which are found in at least 50% of patients with autosomal recessive juvenile parkinsonism, is an E3 further highlights the importance of the UPS in neurological disease. To date, parkin is the only E3 confirmed to have a direct causal role in neurodegenerative disorders. However, a number of other (putative) E3s have now been identified that may cause disease directly or interact with neurological disease-associated proteins. Many of these are either lost or mutated in a given disease or fail to process disease-associated mutant proteins correctly. In this review, we will discuss the role(s) of E3s in neurodegenerative disorders.

© 2004 S. Karger AG, Basel

Article / Publication Details

First-Page Preview
Abstract of Review

Received: December 05, 2003
Accepted: February 19, 2004
Published online: September 30, 2004
Issue release date: October 2004

Number of Print Pages: 17
Number of Figures: 2
Number of Tables: 1

ISSN: 1660-2854 (Print)
eISSN: 1660-2862 (Online)

For additional information: http://www.karger.com/NDD

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.