Journal Mobile Options
Table of Contents
Vol. 11, No. 2, 2006
Issue release date: January 2006
Section title: Original Paper
Audiol Neurotol 2006;11:113–122
(DOI:10.1159/000090684)

An Electronic Prosthesis Mimicking the Dynamic Vestibular Function

Shkel A.M.a, b · Zeng F.-G.b, c
Departments of aMechanical and Aerospace Engineering, bBiomedical Engineering, and cOtolaryngology – Head and Neck Surgery, University of California, Irvine, Calif., USA

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.



Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.



To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restrictions apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Access to all articles of the subscribed year(s) guaranteed for 5 years
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 1/27/2006
Issue release date: January 2006

Number of Print Pages: 10
Number of Figures: 7
Number of Tables: 0

ISSN: 1420-3030 (Print)
eISSN: 1421-9700 (Online)

For additional information: http://www.karger.com/AUD

Abstract

This paper presents a functional architecture, system level design, and electronic evaluation of a unilateral vestibular prosthesis. The sensing unit of the prosthesis is a custom-designed one-axis microelectromechanical system (MEMS) gyroscope. Similar to the natural semicircular canal, the MEMS gyroscope senses angular motion of the head and generates voltages proportional to the corresponding angular acceleration. The voltage is then converted into electric current pulses according to the physiological data relating angular acceleration to the spike count in the vestibular nerve. The current pulses can be delivered to stimulate the corresponding vestibular nerve branch. Electronic properties of the vestibular prosthesis prototype have been systematically evaluated and found to meet the design specifications. A unique feature of the present vestibular implant prototype is the scalability: the sensing unit, pulse generator, and the current source can be potentially implemented on a single chip using integrated MEMS technology.

© 2006 S. Karger AG, Basel


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 1/27/2006
Issue release date: January 2006

Number of Print Pages: 10
Number of Figures: 7
Number of Tables: 0

ISSN: 1420-3030 (Print)
eISSN: 1421-9700 (Online)

For additional information: http://www.karger.com/AUD


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.