Login to MyKarger

New to MyKarger? Click here to sign up.

Login with Facebook

Forgot Password? Reset your password

Authors, Editors, Reviewers

For Manuscript Submission, Check or Review Login please go to Submission Websites List.

Submission Websites List

Institutional Login (Shibboleth)

For the academic login, please select your country in the dropdown list. You will be redirected to verify your credentials.

Table of Contents
Vol. 34, No. 4-5, 2005
Issue release date: May 2006
Section title: Paper
Pathophysiol Haemos Thromb 2005;34:221–227

Antihemostatic Molecules from Saliva of Blood-Feeding Arthropods

Champagne D.E.
Department of Entomology, and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Ga., USA
email Corresponding Author

Donald E. Champagne

Department of Entomology

Center for Tropical and Emerging Global Diseases, University of Georgia

Athens, GA 30602 (USA)

Tel./Fax +1 706 542 2342, E-Mail dchampagne@bugs.ent.uga.edu

Do you have an account?

Login Information

Contact Information

I have read the Karger Terms and Conditions and agree.


The ability to feed on vertebrate blood has evolved many times in various arthropod clades. Each time this trait evolves, novel solutions to the problem posed by vertebrate hemostasis are generated. Consequently, saliva of blood-feeding arthropods has proven to be a rich source of antihemostatic molecules. Vasodilators include nitrophorins (nitric oxide storage and transport heme proteins), a variety of peptides that mimic endogenous vasodilatory neuropeptides, and proteins that catabolize or sequester endogenous vasoconstrictors. A variety of platelet aggregation inhibitors antagonize platelet responses to wound-generated signals, including ADP, thrombin, and collagen. Anticoagulants disrupt elements of both the intrinsic and extrinsic pathways. Molecular approaches (termed ‘sialomics’) to characterize the full inventory of mRNAs transcribed in salivary glands have revealed a surprising level of complexity within a single species. Multiple salivary proteins may be directed against each component of hemostasis, resulting in both redundancy and in some cases cooperative interactions between antihemostatic proteins, as in the case of the Rhodnius prolixus apyrase (which hydrolyzes ADP) and Rhodnius platelet aggregation inhibitor 1 (which sequesters ADP). The complexity and redundancy of saliva ensures an efficient blood meal for the arthropod, but it also provides a diverse array of novel antihemostatic molecules for the pharmacologist.

© 2005 S. Karger AG, Basel

Article / Publication Details

First-Page Preview
Abstract of Paper

Published online: May 19, 2006
Issue release date: May 2006

Number of Print Pages: 7
Number of Figures: 0
Number of Tables: 0

ISSN: 1424-8832 (Print)
eISSN: 1424-8840 (Online)

For additional information: http://www.karger.com/PHT

Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.