Alzheimer’s disease and Parkinson’s disease are the most common neurodegenerative conditions associated with the ageing process. The pathology of these and other neurodegenerative disorders, including polyglutamine diseases, is characterised by the presence of inclusion bodies in brain tissue of affected patients. In general, these inclusion bodies consist of insoluble, unfolded proteins that are commonly tagged with the small protein, ubiquitin. Covalent tagging of proteins with chains of ubiquitin generally targets them for degradation. Indeed, the ubiquitin/proteasome system (UPS) is the major route through which intracellular proteolysis is regulated. This strongly implicates the UPS in these disease-associated inclusions, either due to malfunction (of specific UPS components) or overload of the system (due to aggregation of unfolded/mutant proteins), resulting in subsequent cellular toxicity. Protein targeting for degradation is a highly regulated process. It relies on transfer of ubiquitin molecules to the target protein via an enzyme cascade and specific recognition of a substrate protein by ubiquitin-protein ligases (E3s). Recent advances in our knowledge gained from the Human Genome Mapping Project have revealed the presence of potentially hundreds of E3s within the human genome. The discovery that parkin, mutations in which are found in at least 50% of patients with autosomal recessive juvenile parkinsonism, is an E3 further highlights the importance of the UPS in neurological disease. To date, parkin is the only E3 confirmed to have a direct causal role in neurodegenerative disorders. However, a number of other (putative) E3s have now been identified that may cause disease directly or interact with neurological disease-associated proteins. Many of these are either lost or mutated in a given disease or fail to process disease-associated mutant proteins correctly. In this review, we will discuss the role(s) of E3s in neurodegenerative disorders.

This content is only available via PDF.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.