Journal Mobile Options
Table of Contents
Vol. 185, No. 1-3, 2007
Issue release date: June 2007

Transforming Growth Factor-β and microRNA:mRNA Regulatory Networks in Epithelial Plasticity

Zavadil J. · Narasimhan M. · Blumenberg M. · Schneider R.J.
To view the fulltext, log in and/or choose pay-per-view option

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Noncoding microRNAs act as posttranscriptional repressors of gene function and are often deregulated in cancers and other diseases. Here we review recent findings on microRNA roles in tumorigenesis and report a microRNA profiling screen in transforming growth factor-β1 (TGF-β)-induced epithelial-mesenchymal transition (EMT) in human keratinocytes, a model of epithelial cell plasticity underlying epidermal injury and skin carcinogenesis. We describe a novel EMT-specific microRNA signature that includes induction of miR-21, a candidate oncogenic microRNA associated with carcinogenesis. By integrating the microRNA screen results with target prediction algorithms and gene expression profiling data, we outline a framework for TGF-β-directed microRNA:messenger RNA (mRNA) regulatory circuitry and discuss its biological relevance for tumor progression.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Calin, G.A., M. Ferracin, A. Cimmino, G. Di Leva, M. Shimizu, S.E. Wojcik, M.V. Iorio, R. Visone, N.I. Sever, M. Fabbri, R. Iuliano, T. Palumbo, F. Pichiorri, C. Roldo, R. Garzon, C. Sevignani, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353: 1793–1801.
  2. Cheng, A.M., M.W. Byrom, J. Shelton, L.P. Ford (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33: 1290–1297.
  3. Cimmino, A., G.A. Calin, M. Fabbri, M.V. Iorio, M. Ferracin, M. Shimizu, S.E. Wojcik, R.I. Aqeilan, S. Zupo, M. Dono, L. Rassenti, H. Alder, S. Volinia, C.G. Liu, T.J. Kipps, M. Negrini, C.M. Croce (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.
  4. Cummins, J.M., Y. He, R.J. Leary, R. Pagliarini, L.A. Diaz, Jr., T. Sjoblom, O. Barad, Z. Bentwich, A.E. Szafranska, E. Labourier, C.K. Raymond, B.S. Roberts, H. Juhl, K.W. Kinzler, B. Vogelstein, V.E. Velculescu (2006) The colorectal microRNAome. Proc Natl Acad Sci USA 103: 3687–3692.
  5. Dennis, G., Jr., B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, R.A. Lempicki (2003) DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol 4: P3.
  6. Eis, P.S., W. Tam, L. Sun, A. Chadburn, Z. Li, M.F. Gomez, E. Lund, J.E. Dahlberg (2005) Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 102: 3627–3632.
  7. Farh, K.K., A. Grimson, C. Jan, B.P. Lewis, W.K. Johnston, L.P. Lim, C.B. Burge, D.P. Bartel (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310: 1817–1821.
  8. Hammond, S.M. (2006) MicroRNAs as oncogenes. Curr Opin Genet Dev 16: 4–9.
  9. Hayashita, Y., H. Osada, Y. Tatematsu, H. Yamada, K. Yanagisawa, S. Tomida, Y. Yatabe, K. Kawahara, Y. Sekido, T. Takahashi (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65: 9628–9632.
  10. He, L., J.M. Thomson, M.T. Hemann, E. Hernando-Monge, D. Mu, S. Goodson, S. Powers, C. Cordon-Cardo, S.W. Lowe, G.J. Hannon, S.M. Hammond (2005) A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.
  11. Iorio, M.V., M. Ferracin, C.G. Liu, A. Veronese, R. Spizzo, S. Sabbioni, E. Magri, M. Pedriali, M. Fabbri, M. Campiglio, S. Menard, J.P. Palazzo, A. Rosenberg, P. Musiani, S. Volinia, I. Nenci, G.A. Calin, P. Querzoli, M. Negrini, C.M. Croce (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.
  12. Jiang, J., E.J. Lee, Y. Gusev, T.D. Schmittgen (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res 33: 5394–5403.
  13. Johnson, S.M., H. Grosshans, J. Shingara, M. Byrom, R. Jarvis, A. Cheng, E. Labourier, K.L. Reinert, D. Brown, F.J. Slack (2005) RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.
  14. Krek, A., D. Grun, M.N. Poy, R. Wolf, L. Rosenberg, E.J. Epstein, P. Macmenamin, I. da Piedade, K.C. Gunsalus, M. Stoffel, N. Rajewsky (2005) Combinatorial microRNA target predictions. Nat Genet 37: 495–500.
  15. Lim, L.P., N.C. Lau, P. Garrett-Engele, A. Grimson, J.M. Schelter, J. Castle, D.P. Bartel, P.S. Linsley, J.M. Johnson (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769–773.
  16. Lu, J., G. Getz, E.A. Miska, E. Alvarez-Saavedra, J. Lamb, D. Peck, A. Sweet-Cordero, B.L. Ebert, R.H. Mak, A.A. Ferrando, J.R. Downing, T. Jacks, H.R. Horvitz, T.R. Golub (2005). MicroRNA expression profiles classify human cancers. Nature 435: 834–838.
  17. Metzler, M., M. Wilda, K. Busch, S. Viehmann, A. Borkhardt (2004) High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 39: 167–169.
  18. Michael, M.Z., S.M. O’Connor, N.G. van Holst Pellekaan, G.P. Young, R.J. James (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.
  19. O’Donnell, K.A., E.A. Wentzel, K.I. Zeller, C.V. Dang, J.T. Mendell (2005) c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.
  20. Pillai, R.S. (2005) MicroRNA function: multiple mechanisms for a tiny RNA? RNA 11: 1753–1761.
  21. Shingara, J., K. Keiger, J. Shelton, W. Laosinchai-Wolf, P. Powers, R. Conrad, D. Brown, E. Labourier (2005) An optimized isolation and labeling platform for accurate microRNA expression profiling. RNA 11: 1461–1470.
  22. Shingara, J., K. Keiger, I. Wolf, J. Shelton, E. Labourier, D. Brown (2004) MicroRNA Profiling by Array Analysis Reveals Critical BioMarkers. Ambion’s TechNotes 11: 9–12.
  23. Takamizawa, J., H. Konishi, K. Yanagisawa, S. Tomida, H. Osada, H. Endoh, T. Harano, Y. Yatabe, M. Nagino, Y. Nimura, T. Mitsudomi, T. Takahashi (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 64: 3753–3756.
  24. Thiery, J.P., J.P. Sleeman (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7: 131–142.
  25. van den Berg, A., B.J. Kroesen, K. Kooistra, D. de Jong, J. Briggs, T. Blokzijl, S. Jacobs, J. Kluiver, A. Diepstra, E. Maggio, S. Poppema (2003) High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosomes Cancer 37: 20–28.
  26. Yi, R., D. O’Carroll, H.A. Pasolli, Z. Zhang, F.S. Dietrich, A. Tarakhovsky, E. Fuchs (2006) Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs. Nat Genet 38: 356–362.
  27. Zavadil, J., M. Bitzer, D. Liang, Y.C. Yang, A. Massimi, S. Kneitz, E. Piek, E.P. Bottinger (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-β . Proc Natl Acad Sci USA 98: 6686–6691.
  28. Zavadil, J., E.P. Bottinger (2005) TGF-β and epithelial-to-mesenchymal transitions. Oncogene 24: 5764–5774.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50