Journal Mobile Options
Table of Contents
Vol. 53, No. 4, 2007
Issue release date: July 2007
Chemotherapy 2007;53:233–256
(DOI:10.1159/000104457)

Hypoxic Regulation of Glucose Transport, Anaerobic Metabolism and Angiogenesis in Cancer: Novel Pathways and Targets for Anticancer Therapeutics

Airley R.E. · Mobasheri A.
aDepartment of Developmental and Molecular Biology, Chanin Institute, Albert Einstein College of Medicine of Yeshiva University, Bronx, N.Y., USA; bMolecular Pathogenesis Research Group, Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool, and Division of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, UK

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Cancer cells require a steady source of metabolic energy in order to continue their uncontrolled growth and proliferation. Accelerated glycolysis is one of the biochemical characteristics of cancer cells. Recent work indicates that glucose transport and metabolism are essential for the posttreatment survival of tumor cells, leading to poor prognosis. Glycolytic breakdown of glucose is preceded by the transport of glucose across the cell membrane, a rate-limiting process mediated by facilitative glucose transporter proteins belonging to the facilitative glucose transporter/solute carrier GLUT/SLC2A family. Tumors frequently show overexpression of GLUTs, especially the hypoxia-responsive GLUT1 and GLUT3 proteins. There are also studies that have reported associations between GLUT expression and proliferative indices, whilst others suggest that GLUT expression may be of prognostic significance. In this article we revisit Warburg’s original hypothesis and review the recent clinical and basic research on the expression of GLUT family members in human cancers and in cell lines derived from human tumors. We also explore the links between hypoxia-induced genes, glucose transporters and angiogenic factors. Hypoxic tumors are significantly more malignant, metastatic, radio- and chemoresistant and have a poor prognosis. With the discovery the oxygen-sensitive transcription factor hypoxia-inducible factor (HIF-1) has come a new understanding of the molecular link between hypoxia and deregulated glucose metabolism. HIF-1 induces a number of genes integral to angiogenesis, e.g. vascular endothelial growth factor (VEGF), a process intimately involved with metastatic spread. This knowledge may enhance existing chemotherapeutic strategies so that treatment can be more rationally applied and personalized for cancer patients.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Tolley HD, Burdick D, Manton KG, Stallard E: Compartment model approach to the estimation of tumor incidence and growth: investigation of a model of cancer latency. Biometrics 1978;34:377–389.
  2. Lantos PL: Development of nitrosourea-induced brain tumours – with a special note on changes occurring during latency. Food Chem Toxicol 1986;24:121–127.
  3. Loktionov A: Common gene polymorphisms, cancer progression and prognosis. Cancer Lett 2004;208:1–33.
  4. Yokota J: Tumor progression and metastasis. Carcinogenesis 2000;21:497–503.
  5. Warburg O: On the origin of cancer cells. Science 1956;123:309–314.
  6. Smith TA: Facilitative glucose transporter expression in human cancer tissue. Br J Biomed Sci 1999;56:285–292.
  7. Binder C, Binder L, Marx D, Schauer A, Hiddemann W: Deregulated simultaneous expression of multiple glucose transporter isoforms in malignant cells and tissues. Anticancer Res 1997;17:4299–4304.
  8. Medina RA, Owen GI: Glucose transporters: expression, regulation and cancer. Biol Res 2002;35:9–26.
  9. Oliver RJ, Woodwards RT, Sloan P, Thakker NS, Stratford IJ, Airley RE: Prognostic value of facilitative glucose transporter Glut-1 in oral squamous cell carcinomas treated by surgical resection; results of EORTC Translational Research Fund studies. Eur J Cancer 2004;40:503–507.
  10. Grover-McKay M, Walsh SA, Seftor EA, Thomas PA, Hendrix MJ: Role for glucose transporter 1 protein in human breast cancer. Pathol Oncol Res 1998;4:115–120.
  11. Tateishi U, Yamaguchi U, Seki K, Terauchi T, Arai Y, Hasegawa T: Glut-1 expression and enhanced glucose metabolism are associated with tumour grade in bone and soft tissue sarcomas: a prospective evaluation by [(18)F] fluorodeoxyglucose positron emission tomography. Eur J Nucl Med Mol Imaging 2006;33:683–691.
  12. Wagstaff P, Kang HY, Mylott D, Robbins PJ, White MK: Characterization of the avian GLUT1 glucose transporter: differential regulation of GLUT1 and GLUT3 in chicken embryo fibroblasts. Mol Biol Cell 1995;6:1575–1589.
  13. Digirolamo M: Diet and Cancer: Markers, Prevention and Treatment. New York, Plenum Press, 1994.
  14. Burk D, Woods M: Newer aspects of glucose fermentation in cancer growth and control. Arch Geschwulstforsch 1967;28:305–319.
  15. Subhash MN, Rao BSS, Shankar SK: Changes in lactate dehydrogenase isoenzyme pattern in patients with tumors of the central nervous system. Neurochem Int 1993;22:121–124.
  16. Wood IS, Trayhurn P: Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Br J Nutr 2003;89:3–9.
  17. Joost HG, Thorens B: The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol Membr Biol 2001;18:247–256.
  18. Mueckler M: Facilitative glucose transporters. Eur J Biochem 1994;219:713–725.
  19. Thorens B: GLUT2 in pancreatic and extra-pancreatic gluco-detection (review). Mol Membr Biol 2001;18:265–273.
  20. Shepherd PR, Gould GW, Colville CA, McCoid SC, Gibbs EM, Kahn BB: Distribution of GLUT3 glucose transporter protein in human tissues. Biochem Biophys Res Commun 1992;188:149–154.
  21. Haber RS, Weinstein SP, O’Boyle E, Morgello S: Tissue distribution of the human GLUT3 glucose transporter. Endocrinology 1993;132:2538–2543.
  22. Burant CF, Davidson NO: GLUT3 glucose transporter isoform in rat testis: localization, effect of diabetes mellitus, and comparison to human testis. Am J Physiol 1994;267:R1488–1495..
  23. Charron MJ, Brosius FC 3rd, Alper SL, Lodish HF: A glucose transport protein expressed predominately in insulin-responsive tissues. Proc Natl Acad Sci USA 1989;86:2535–2539.
  24. Uldry M, Ibberson M, Horisberger JD, Chatton JY, Riederer BM, Thorens B: Identification of a mammalian H(+)-myo-inositol symporter expressed predominantly in the brain. EMBO J 2001;20:4467–4477.
  25. Wu X, Freeze HH: GLUT14, a duplicon of GLUT3, is specifically expressed in testis as alternative splice forms. Genomics 2002;80: 553–557..
  26. Tomita T: New markers for pancreatic islets and islet cell tumors. Pathol Int 2002;52:425–432.
  27. Vordermark D, Brown JM: Endogenous markers of tumor hypoxia predictors of clinical radiation resistance? Strahlenther Onkol 2003;179:801–811..
  28. Brown RS, Wahl RL: Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer 1993;72:2979–2985.
  29. Ravazoula P, Batistatou A, Aletra C, Ladopoulos J, Kourounis G, Tzigounis B: Immunohistochemical expression of glucose transporter Glut1 and cyclin D1 in breast carcinomas with negative lymph nodes. Eur J Gynaecol Oncol 2003;24:544–546.
  30. Alo PL, Visca P, Botti C, Galati GM, Sebastiani V, Andreano T, Di Tondo U, Pizer ES: Immunohistochemical expression of human erythrocyte glucose transporter and fatty acid synthase in infiltrating breast carcinomas and adjacent typical/atypical hyperplastic or normal breast tissue. Am J Clin Pathol 2001;116:129–134.
  31. Younes M, Brown RW, Mody DR, Fernandez L, Laucirica R: GLUT1 expression in human breast carcinoma: correlation with known prognostic markers. Anticancer Res 1995;15:2895–2898.
  32. Zamora-Leon SP, Golde DW, Concha II, Rivas CI, Delgado-Lopez F, Baselga J, Nualart F, Vera JC: Expression of the fructose transporter GLUT5 in human breast cancer. Proc Natl Acad Sci USA 1996;93:1847–1852.
  33. Rogers S, Macheda ML, Docherty SE, Carty MD, Henderson MA, Soeller WC, Gibbs EM, James DE, Best JD: Identification of a novel glucose transporter-like protein-GLUT-12. Am J Physiol Endocrinol Metab 2002;282:E733–738.
  34. Haber RS, Rathan A, Weiser KR, Pritsker A, Itzkowitz SH, Bodian C, Slater G, Weiss A, Burstein DE: GLUT1 glucose transporter expression in colorectal carcinoma: a marker for poor prognosis. Cancer 1998;83:34–40.
  35. Furudoi A, Tanaka S, Haruma K, Yoshihara M, Sumii K, Kajiyama G, Shimamoto F: Clinical significance of human erythrocyte glucose transporter 1 expression at the deepest invasive site of advanced colorectal carcinoma. Oncology 2001;60:162–169.
  36. Cooper R, Sarioglu S, Sokmen S, Fuzun M, Kupelioglu A, Valentine H, Gorken IB, Airley R, West C: Glucose transporter-1 (GLUT-1): a potential marker of prognosis in rectal carcinoma? Br J Cancer 2003;89:870–876.
  37. Mellanen P, Minn H, Grenman R, Harkonen P: Expression of glucose transporters in head-and-neck tumors. Int J Cancer 1994;56:622–629.
  38. Mineta H, Miura K, Takebayashi S, Misawa K, Araki K, Misawa Y, Ueda Y: Prognostic value of glucose transporter 1 expression in patients with hypopharyngeal carcinoma. Anticancer Res 2002;22:3489–3494.
  39. Kato H, Takita J, Miyazaki T, Nakajima M, Fukai Y, Masuda N, Fukuchi M, Manda R, Ojima H, Tsukada K, Kuwano H: Glut-1 glucose transporter expression in esophageal squamous cell carcinoma is associated with tumor aggressiveness. Anticancer Res 2002;22:2635–2639.
  40. Kunkel M, Reichert TE, Benz P, Lehr HA, Jeong JH, Wieand S, Bartenstein P, Wagner W, Whiteside TL: Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 2003;97:1015–1024.
  41. Younes M, Brown RW, Stephenson M, Gondo M, Cagle PT: Overexpression of Glut1 and Glut3 in stage I nonsmall cell lung carcinoma is associated with poor survival. Cancer 1997;80:1046–1051.
  42. Minami K, Saito Y, Imamura H, Okamura A: Prognostic significance of p53, Ki-67, VEGF and Glut-1 in resected stage I adenocarcinoma of the lung. Lung Cancer 2002;38:51–57.
  43. Younes M, Juarez D, Lechago LV, Lerner SP: Glut 1 expression in transitional cell carcinoma of the urinary bladder is associated with poor patient survival. Anticancer Res 2001;21:575–578.
  44. Kim YW, Park YK, Yoon TY, Lee SM: Expression of the GLUT1 glucose transporter in gallbladder carcinomas. Hepatogastroenterology 2002;49:907–911.
  45. Kawamura T, Kusakabe T, Sugino T, Watanabe K, Fukuda T, Nashimoto A, Honma K, Suzuki T: Expression of glucose transporter-1 in human gastric carcinoma: association with tumor aggressiveness, metastasis, and patient survival. Cancer 2001;92:634–641.
  46. Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, Hunter R, Stratford I, West C: Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 2001;7:928–934.
  47. Schonberger J, Ruschoff J, Grimm D, Marienhagen J, Rummele P, Meyringer R, Kossmehl P, Hofstaedter F, Eilles C: Glucose transporter 1 gene expression is related to thyroid neoplasms with an unfavorable prognosis: an immunohistochemical study. Thyroid 2002;12:747–754.
  48. Higashi T, Tamaki N, Honda T, Torizuka T, Kimura T, Inokuma T, Ohshio G, Hosotani R, Imamura M, Konishi J: Expression of glucose transporters in human pancreatic tumors compared with increased FDG accumulation in PET study. J Nucl Med 1997;38:1337–1344.
  49. Boado RJ, Black KL, Pardridge WM: Gene expression of GLUT3 and GLUT1 glucose transporters in human brain tumors. Brain Res Mol Brain Res 1994;27:51–57.
  50. Moriyama N, Kurimoto S, Kawabe K, Takata K, Hirano H: Immunohistochemical expression of glucose transporter-1 in human penile proliferative lesions. Histochem J 1997;29:273–278.
  51. Kalir T, Wang BY, Goldfischer M, Haber RS, Reder I, Demopoulos R, Cohen CJ, Burstein DE: Immunohistochemical staining of GLUT1 in benign, borderline, and malignant ovarian epithelia. Cancer 2002;94:1078–1082.
  52. Cantuaria G, Magalhaes A, Penalver M, Angioli R, Braunschweiger P, Gomez-Marin O, Kanhoush R, Gomez-Fernandez C, Nadji M: Expression of GLUT-1 glucose transporter in borderline and malignant epithelial tumors of the ovary. Gynecol Oncol 2000;79:33–37.
  53. Cantuaria G, Fagotti A, Ferrandina G, Magalhaes A, Nadji M, Angioli R, Penalver M, Mancuso S, Scambia G: GLUT-1 expression in ovarian carcinoma: association with survival and response to chemotherapy. Cancer 2001;92:1144–1150.
  54. Yamamoto T, Seino Y, Fukumoto H, Koh G, Yano H, Inagaki N, Yamada Y, Inoue K, Manabe T, Imura H: Over-expression of facilitative glucose transporter genes in human cancer. Biochem Biophys Res Commun 1990;170:223–230.
  55. Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J: Immunohistochemical detection of Glut3 in human tumors and normal tissues. Anticancer Res 1997;17:2747–2750.
  56. Baer S, Casaubon L, Schwartz MR, Marcogliese A, Younes M: Glut3 expression in biopsy specimens of laryngeal carcinoma is associated with poor survival. Laryngoscope 2002;112:393–396.
  57. Song CW, Lee CK, Rhee JG, Levitt SH: Comparison of the cytotoxicity of 5-thio-D-glucose and misonidazole on hypoxic cells in vitro. Int J Radiat Oncol Biol Phys 1982;8:749–752.
  58. Tannock IF, Guttman P, Rauth AM: Failure of 2-deoxy-D-glucose and 5-thio-D-glucose to kill hypoxic cells of two murine tumors. Cancer Res 1983;43:980–983.
  59. Jain VK, Kalia VK, Sharma R, Maharajan V, Menon M: Effects of 2-deoxy-D-glucose on glycolysis, proliferation kinetics and radiation response of human cancer cells. Int J Radiat Oncol Biol Phys 1985;11:943–950.
  60. Purohit SC, Pohlit W: Experimental evaluation of the glucose antimetabolite, 2-deoxy-D-glucose (2-DG) as a possible adjuvant to radiotherapy of tumors. I. Kinetics of growth and survival of Ehrlich ascites tumor cells (EATC) in vitro and of growth of solid tumors after 2-DG and X-irradiation. Int J Radiat Oncol Biol Phys 1982;8:495–499.
  61. Jha B, Pohlit W: Effect of 2-deoxy-D-glucose on DNA double strand break repair, cell survival and energy metabolism in euoxic Ehrlich ascites tumour cells. Int J Radiat Biol 1992;62:409–415.
  62. Sharma RK, Jain V: Tackling radioresistance of hypoxic cells by metabolic modulation of bioenergetics – a 31P MRS study on perfused Ehrlich ascites tumor cells. Indian J Physiol Pharmacol 2002;46:51–60.
  63. Cantuaria G, Magalhaes A, Angioli R, Mendez L, Mirhashemi R, Wang J, Wang P, Penalver M, Averette H, Braunschweiger P: Antitumor activity of a novel glyco-nitric oxide conjugate in ovarian carcinoma. Cancer 2000;88:381–388.
  64. Reinhard J, Eichhorn U, Wiessler M, Kaina B: Inactivation of O(6)-methylguanine-DNA methyltransferase by glucose-conjugated inhibitors. Int J Cancer 2001;93:373–379.
  65. Paridaens R, Uges DR, Barbet N, Choi L, Seeghers M, van der Graaf WT, Groen HJ, Dumez H, Buuren IV, Muskiet F, Capdeville R, Oosterom AT, de Vries EG: A phase I study of a new polyamine biosynthesis inhibitor, SAM486A, in cancer patients with solid tumours. Br J Cancer 2000;83:594–601.
  66. Styczynski J, Wysocki M, Debski R, Balwierz W, Rokicka-Milewska R, Matysiak M, Balcerska A, Kowalczyk J, Wachowiak J, Sonta-Jakimczyk D, Chybicka A: In vitro activity of oxazaphosphorines in childhood acute leukemia: preliminary report. Acta Biochim Pol 2002;49:221–225.
  67. Mueckler M, Caruso C, Baldwin SA, Panico M, Blench I, Morris HR, Allard WJ, Lienhard GE, Lodish HF: Sequence and structure of a human glucose transporter. Science 1985;229:941–945.
  68. Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P: Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 1996;56:4509–4515.
  69. Hockel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M, Knapstein PG, Vaupel P: Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 1993;26:45–50.
  70. Harrison LB, Chadha M, Hill RJ, Hu K, Shasha D: Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002;7:492–508.
  71. Fyles AW, Milosevic M, Wong R, Kavanagh MC, Pintilie M, Sun A, Chapman W, Levin W, Manchul L, Keane TJ, Hill RP: Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol 1998;48:149–156.
  72. Hall Eric J: Radiobiology for the Radiologist. Philadelphia, Lippincott Williams & Wilkins, 2000.
  73. Nias AHW: An Introduction to Radiobiology. Chichester, Wiley, 1998.
  74. Denekamp J, Michael BD, Harris SR: Hypoxic cell radiosensitizers: comparative tests of some electron affinic compounds using epidermal cell survival in vivo. Radiat Res 1974;60:119–132.
  75. Murayama C, Mori T: Present status of radiation sensitizers – hypoxic cell radiosensitizer. Gan To Kagaku Ryoho 1989;16:2135–2141.
  76. Aoki M, Furusawa Y, Shibamoto Y, Kobayashi A, Tsujitani M: Effect of a hypoxic cell sensitizer doranidazole on the radiation-induced apoptosis of mouse L5178Y lymphoma cells. J Radiat Res (Tokyo) 2002;43:161–166.
  77. Nemoto K, Shibamoto Y, Ohmagari J, Baba Y, Ebe K, Ariga H, Takai Y, Ouchi A, Sasai K, Shinozaki M, Tsujitani M, Sakaguchi M, Yamada S, Sakamoto K: Phase 1a study of a hypoxic cell sensitizer doranidazole (PR-350) in combination with conventional radiotherapy. Anticancer Drugs 2001;12:1–6.
  78. Teicher BA: Hypoxia and drug resistance. Cancer Metastasis Rev 1994;13:139–168.
  79. Buettner GR, Oberley LW: The production of hydroxyl radical by tallysomycin and copper (II). FEBS Lett 1979;101:333–335.
  80. Hockel M, Vaupel P: Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001;93:266–276.
  81. Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 1989;49:6449–6465.
  82. Vaupel P, Kallinowski F, Okunieff P: Blood flow, oxygen consumption and tissue oxygenation of human tumors. Adv Exp Med Biol 1990;277:895–905.
  83. Denekamp J, Dasu A: Inducible repair and the two forms of tumour hypoxia – time for a paradigm shift. Acta Oncol 1999;38:903–918.
  84. Liu XD, Pan GY, Xie L, Hou YY, Lan W, Su Q, Liu GQ: Cyclosporin A enhanced protection of nimodipine against brain damage induced by hypoxia-ischemia in mice and rats. Acta Pharmacol Sin 2002;23:225–229.
  85. Brown JM: SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. Br J Cancer 1993;67:1163–1170.
  86. Brown JM: Hypoxic cytotoxic agents: a new approach to cancer chemotherapy. Drug Resist Updat 2000;3:7–13.
  87. Patterson LH, McKeown SR: AQ4N: A new approach to hypoxia-activated cancer chemotherapy. Br J Cancer 2000;83:1589–1593.
  88. Ulhaq S, Naylor MA, Chinje EC, Threadgill MD, Stratford IJ: S-2-Amino-5-(2-nitroimidazol-1-yl)pentanoic acid: a model for potential bioreductively activated prodrugs for inhibitors of nitric oxide synthase (NOS) activity. Anticancer Drug Des 1997;12:61–65.
  89. Wood PJ, Horsman MR, Khalil AA, Steinberg F, Streffer C, Overgaard J, Stratford IJ, Adams GE: A comparison of the physiological effects of RSU1069 and RB6145 in the SCCVII murine tumour. Acta Oncol 1996;35:989–994.
  90. Brown JM, Siim BG: Hypoxia-specific cytotoxins in cancer therapy. Semin Radiat Oncol 1996;6:22–36.

    External Resources

  91. Stratford IJ, Williams KJ, Cowen RL, Jaffar M: Combining bioreductive drugs and radiation for the treatment of solid tumors. Semin Radiat Oncol 2003;13:42–52.
  92. Stratford IJ, Workman P: Bioreductive drugs into the next millennium. Anticancer Drug Des 1998;13:519–528.
  93. Brown JM, Wang LH: Tirapazamine: laboratory data relevant to clinical activity. Anticancer Drug Des 1998;13:529–539.
  94. Bremner JC, Stratford IJ, Bowler J, Adams GE: Bioreductive drugs and the selective induction of tumour hypoxia. Br J Cancer 1990;61:717–721.
  95. Patterson AV, Saunders MP, Chinje EC, Patterson LH, Stratford IJ: Enzymology of tirapazamine metabolism: A review. Anticancer Drug Des 1998;13:541–573.
  96. Ema M, Taya S, Yokotani N, Sogawa K, Matsuda Y, Fujii-Kuriyama Y: A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci USA 1997;94:4273–4278.
  97. Gu YZ, Moran SM, Hogenesch JB, Wartman L, Bradfield CA: Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 1998;7:205–213.
  98. Wenger RH: Mammalian oxygen sensing, signalling and gene regulation. J Exp Biol 2000;203:1253–1263.
  99. Huang LE, Gu J, Schau M, Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998;95:7987–7992.
  100. Huang LE, Arany Z, Livingston DM, Bunn HF: Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 1996;271:32253–32259.
  101. Ratcliffe PJ, O’Rourke JF, Maxwell PH, Pugh CW: Oxygen sensing, hypoxia-inducible factor-1 and the regulation of mammalian gene expression. J Exp Biol 1998;201:1153–1162.
  102. Semenza GL, Roth PH, Fang HM, Wang GL: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J Biol Chem 1994;269:23757–23763.
  103. Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P, Giallongo A: Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 1996;271:32529–32537.
  104. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL: Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 2000;60:7075–7083.
  105. Maxwell PH, Dachs GU, Gleadle JM, Nicholls LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW, Ratcliffe PJ: Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci USA 1997;94:8104–8109.
  106. Wiesener MS, Munchenhagen PM, Berger I, Morgan NV, Roigas J, Schwiertz A, Jurgensen JS, Gruber G, Maxwell PH, Loning SA, Frei U, Maher ER, Grone HJ, Eckardt KU: Constitutive activation of hypoxia-inducible genes related to overexpression of hypoxia-inducible factor-1alpha in clear cell renal carcinomas. Cancer Res 2001;61:5215–5222.
  107. Williams KJ, Telfer BA, Airley RE, Peters HP, Sheridan MR, van der Kogel AJ, Harris AL, Stratford IJ: A protective role for HIF-1 in response to redox manipulation and glucose deprivation: implications for tumorigenesis. Oncogene 2002;21:282–290.
  108. Chen J, Zhao S, Nakada K, Kuge Y, Tamaki N, Okada F, Wang J, Shindo M, Higashino F, Takeda K, Asaka M, Katoh H, Sugiyama T, Hosokawa M, Kobayashi M: Dominant-negative hypoxia-inducible factor-1alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am J Pathol 2003;162:1283–1291.
  109. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL: Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996;16:4604–4613.
  110. Salceda S, Beck I, Caro J: Absolute requirement of aryl hydrocarbon receptor nuclear translocator protein for gene activation by hypoxia. Arch Biochem Biophys 1996;334:389–394.
  111. Wood SM, Gleadle JM, Pugh CW, Hankinson O, Ratcliffe PJ: The role of the aryl hydrocarbon receptor nuclear translocator (ARNT) in hypoxic induction of gene expression. Studies in ARNT-deficient cells. J Biol Chem 1996;271:15117–15123.
  112. Jiang BH, Agani F, Passaniti A, Semenza GL: V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 1997;57:5328–5335..
  113. Greiner EF, Guppy M, Brand K: Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem 1994;269:31484–31490.
  114. Hiraki Y, Rosen OM, Birnbaum MJ: Growth factors rapidly induce expression of the glucose transporter gene. J Biol Chem 1988;263:13655–13662.
  115. Kitagawa T, Tanaka M, Akamatsu Y: Regulation of glucose transport activity and expression of glucose transporter mRNA by serum, growth factors and phorbol ester in quiescent mouse fibroblasts. Biochim Biophys Acta 1989;980:100–108.
  116. Hatanaka M: Transport of sugars in tumor cell membranes. Biochim Biophys Acta 1974;355:77–104.
  117. Dang CV, Lewis BC, Dolde C, Dang G, Shim H: Oncogenes in tumor metabolism, tumorigenesis, and apoptosis. J Bioenerg Biomembr 1997;29:345–354.
  118. Osthus RC, Shim H, Kim S, Li Q, Reddy R, Mukherjee M, Xu Y, Wonsey D, Lee LA, Dang CV: Deregulation of glucose transporter 1 and glycolytic gene expression by c-Myc. J Biol Chem 2000;275:21797–21800.
  119. Baron-Delage S, Mahraoui L, Cadoret A, Veissiere D, Taillemite JL, Chastre E, Gespach C, Zweibaum A, Capeau J, Brot-Laroche E, Cherqui G: Deregulation of hexose transporter expression in Caco-2 cells by ras and polyoma middle T oncogenes. Am J Physiol 1996;270:G314–323.
  120. Onetti R, Baulida J, Bassols A: Increased glucose transport in ras-transformed fibroblasts: a possible role for N-glycosylation of GLUT1. FEBS Lett 1997;407:267–270.
  121. Chen C, Pore N, Behrooz A, Ismail-Beigi F, Maity A: Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J Biol Chem 2001;276:9519–9525.
  122. Kallinowski F, Brownell AL, Vaupel P, Brownell GL: Combined tissue oxygen tension measurement and positron emission tomography studies on glucose utilization in oncogene-transformed cell line tumour xenografts in nude mice. Br J Radiol 1991;64:350–359.
  123. Seagroves TN, Ryan HE, Lu H, Wouters BG, Knapp M, Thibault P, Laderoute K, Johnson RS: Transcription factor HIF-1 is a necessary mediator of the pasteur effect in mammalian cells. Mol Cell Biol 2001;21:3436–3444.
  124. Behrooz A, Ismail-Beigi F: Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. J Biol Chem 1997;272:5555–5562.
  125. Behrooz A, Ismail-Beigi F: Stimulation of glucose transport by hypoxia: signals and mechanisms. News Physiol Sci 1999;14:105–110.
  126. Zhang JZ, Behrooz A, Ismail-Beigi F: Regulation of glucose transport by hypoxia. Am J Kidney Dis 1999;34:189–202.
  127. Diamond DL, Carruthers A: Metabolic control of sugar transport by derepression of cell surface glucose transporters. An insulin-independent recruitment-independent mechanism of regulation. J Biol Chem 1993;268:6437–6444.
  128. Carruthers A, Helgerson AL: The human erythrocyte sugar transporter is also a nucleotide binding protein. Biochemistry 1989;28:8337–8346.
  129. Cloherty EK, Diamond DL, Heard KS, Carruthers A: Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism. Biochemistry 1996;35:13231–13239.
  130. Wheeler TJ: Translocation of glucose transporters in response to anoxia in heart. J Biol Chem 1988;263:19447–19454.
  131. Young LH, Renfu Y, Russell R, Hu X, Caplan M, Ren J, Shulman GI, Sinusas AJ: Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 1997;95:415–422.
  132. Shetty M, Loeb JN, Ismail-Beigi F: Enhancement of glucose transport in response to inhibition of oxidative metabolism: pre- and posttranslational mechanisms. Am J Physiol 1992;262:C527–C532.
  133. Shetty M, Ismail-Beigi N, Loeb JN, Ismail-Beigi F: Induction of GLUT1 mRNA in response to inhibition of oxidative phosphorylation. Am J Physiol 1993;265:C1224– C1229.
  134. Hamilton BJ, Nichols RC, Tsukamoto H, Boado RJ, Pardridge WM, Rigby WF: hnRNP A2 and hnRNP L bind the 3′UTR of glucose transporter 1 mRNA and exist as a complex in vivo. Biochem Biophys Res Commun 1999;261:646–651.
  135. Bos R, van Der Hoeven JJ, van Der Wall E, van Der Groep P, van Diest PJ, Comans EF, Joshi U, Semenza GL, Hoekstra OS, Lammertsma AA, Molthoff CF: Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J Clin Oncol 2002;20:379–387.
  136. Kietzmann T, Krones-Herzig A, Jungermann K: Signaling cross-talk between hypoxia and glucose via hypoxia-inducible factor 1 and glucose response elements. Biochem Pharmacol 2002;64:903–911.
  137. Krones A, Jungermann K, Kietzmann T: Cross-talk between the signals hypoxia and glucose at the glucose response element of the L-type pyruvate kinase gene. Endocrinology 2001;142:2707–2718.
  138. Patterson AV, Williams KJ, Cowen RL, Jaffar M, Telfer BA, Saunders M, Airley R, Honess D, van der Kogel AJ, Wolf CR, Stratford IJ: Oxygen-sensitive enzyme-prodrug gene therapy for the eradication of radiation-resistant solid tumours. Gene Ther 2002;9:946–954.
  139. Stratford IJ: Bioreductive drugs in cancer therapy. BJR Suppl 1992;24:128–136.
  140. De Jaeger K, Merlo FM, Kavanagh MC, Fyles AW, Hedley D, Hill RP: Heterogeneity of tumor oxygenation: relationship to tumor necrosis, tumor size, and metastasis. Int J Radiat Oncol Biol Phys 1998;42:717–721.
  141. Hodgkiss RJ, Wardman P: The measurement of hypoxia in tumours. BJR Suppl 1992;24:105–110.
  142. Brizel DM, Scully SP, Harrelson JM, Layfield LJ, Bean JM, Prosnitz LR, Dewhirst MW: Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 1996;56:941–943.
  143. Nordsmark M, Overgaard M, Overgaard J: Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol 1996;41:31–39.
  144. Nordsmark M, Hoyer M, Keller J, Nielsen OS, Jensen OM, Overgaard J: The relationship between tumor oxygenation and cell proliferation in human soft tissue sarcomas. Int J Radiat Oncol Biol Phys 1996;35:701–708.
  145. Siemann DW, Johansen IM, Horsman MR: Radiobiological hypoxia in the KHT sarcoma: predictions using the Eppendorf histograph. Int J Radiat Oncol Biol Phys 1998;40:1171–1176.
  146. Cruickshank GS, Rampling R: Peri-tumoural hypoxia in human brain: peroperative measurement of the tissue oxygen tension around malignant brain tumours. Acta Neurochir Suppl (Wien) 1994;60:375–377.
  147. West CM, Cooper RA, Loncaster JA, Wilks DP, Bromley M: Tumor vascularity: a histological measure of angiogenesis and hypoxia. Cancer Res 2001;61:2907–2910.
  148. Cooper RA, West CM, Wilks DP, Logue JP, Davidson SE, Roberts SA, Hunter RD: Tumour vascularity is a significant prognostic factor for cervix carcinoma treated with radiotherapy: independence from tumour radiosensitivity. Br J Cancer 1999;81:354–358.
  149. Cooper RA, Wilks DP, Logue JP, Davidson SE, Hunter RD, Roberts SA, West CM: High tumor angiogenesis is associated with poorer survival in carcinoma of the cervix treated with radiotherapy. Clin Cancer Res 1998;4:2795–2800.
  150. Rocchetti R, Talevi S, Margiotta C, Calza R, Corallini A, Possati L: Antiangiogenic drugs for chemotherapy of bladder tumours. Chemotherapy 2005;51:291–299.
  151. Hodgkiss RJ: Use of 2-nitroimidazoles as bioreductive markers for tumour hypoxia. Anticancer Drug Des 1998;13:687–702.
  152. Begg AC, Janssen H, Sprong D, Hofland I, Blommestijn G, Raleigh JA, Varia M, Balm A, Van Velthuyzen L, Delaere P, Sciot R, Haustermans KMG: Hypoxia and perfusion measurements in human tumors – initial experience with pimonidazole and IUdR. Acta Oncol 2001;40:924–928.
  153. Varia MA, Calkins-Adams DP, Rinker LH, Kennedy AS, Novotny DB, Fowler WC Jr, Raleigh JA: Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. Gynecol Oncol 1998;71:270–277.
  154. Kaanders JH, Wijffels KI, Marres HA, Ljungkvist AS, Pop LA, van den Hoogen FJ, de Wilde PC, Bussink J, Raleigh JA, van der Kogel AJ: Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer. Cancer Res 2002;62:7066–7074.
  155. Thrall DE, Rosner GL, Azuma C, McEntee MC, Raleigh JA: Hypoxia marker labeling in tumor biopsies: quantification of labeling variation and criteria for biopsy sectioning. Radiother Oncol 1997;44:171–176.
  156. Raleigh JA, Chou SC, Arteel GE, Horsman MR: Comparisons among pimonidazole binding, oxygen electrode measurements, and radiation response in C3H mouse tumors. Radiat Res 1999;151:580–589.
  157. Nordsmark M, Loncaster J, Aquino-Parsons C, Chou SC, Ladekarl M, Havsteen H, Lindegaard JC, Davidson SE, Varia M, West C, Hunter R, Overgaard J, Raleigh JA: Measurements of hypoxia using pimonidazole and polarographic oxygen-sensitive electrodes in human cervix carcinomas. Radiother Oncol 2003;67:35–44.
  158. Nordsmark M, Loncaster J, Chou SC, Havsteen H, Lindegaard JC, Davidson SE, Varia M, West C, Hunter R, Overgaard J, Raleigh JA: Invasive oxygen measurements and pimonidazole labeling in human cervix carcinoma. Int J Radiat Oncol Biol Phys 2001;49:581–586.
  159. Loncaster JA, Harris AL, Davidson SE, Logue JP, Hunter RD, Wycoff CC, Pastorek J, Ratcliffe PJ, Stratford IJ, West CM: Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. Cancer Res 2001;61:6394–6399.
  160. Airley RE, Loncaster J, Raleigh JA, Harris AL, Davidson SE, Hunter RD, West CM, Stratford IJ: GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. Int J Cancer 2003;104:85–91.
  161. Wouters BG, Brown JM: Cells at intermediate oxygen levels can be more important than the ‘hypoxic fraction’ in determining tumor response to fractionated radiotherapy. Radiat Res 1997;147:541–550.
  162. Cairns RA, Kalliomaki T, Hill RP: Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 2001;61:8903–8908.
  163. Zavada J, Zavadova Z, Pastorek J, Biesova Z, Jezek J, Velek J: Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer 2000;82:1808–1813.
  164. Yasuda S, Fujii H, Takahashi W, Takagi S, Ide M, Shohtsu A: PET evaluation of glucose metabolism in cancer. Gan To Kagaku Ryoho 1999;26:756–761.
  165. Smith TA: FDG uptake, tumour characteristics and response to therapy: a review. Nucl Med Commun 1998;19:97–105.
  166. Price P: Positron emission tomography (PET) in diagnostic oncology: is it a necessary tool today? Eur J Cancer 2000;36:691–693.
  167. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B: FDG accumulation and tumor biology. Nucl Med Biol 1998;25:317–322.
  168. Brown RS, Leung JY, Fisher SJ, Frey KA, Ethier SP, Wahl RL: Intratumoral distribution of tritiated-FDG in breast carcinoma: correlation between Glut-1 expression and FDG uptake. J Nucl Med 1996;37:1042–1047.
  169. Brown RS, Goodman TM, Zasadny KR, Greenson JK, Wahl RL: Expression of hexokinase II and Glut-1 in untreated human breast cancer. Nucl Med Biol 2002;29:443–453.
  170. Brown RS, Leung JY, Kison PV, Zasadny KR, Flint A, Wahl RL: Glucose transporters and FDG uptake in untreated primary human non-small cell lung cancer. J Nucl Med 1999;40:556–565.
  171. Haberkorn U, Ziegler SI, Oberdorfer F, Trojan H, Haag D, Peschke P, Berger MR, Altmann A, van Kaick G: FDG uptake, tumor proliferation and expression of glycolysis associated genes in animal tumor models. Nucl Med Biol 1994;21:827–834.
  172. Zimny M, Bares R, Fass J, Adam G, Cremerius U, Dohmen B, Klever P, Sabri O, Schumpelick V, Buell U: Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: a report of 106 cases. Eur J Nucl Med 1997;24:678–682.
  173. Reske SN, Grillenberger KG, Glatting G, Port M, Hildebrandt M, Gansauge F, Beger HG: Overexpression of glucose transporter 1 and increased FDG uptake in pancreatic carcinoma. J Nucl Med 1997;38:1344–1348.
  174. Adams S, Baum R, Rink T, Schumm-Drager PM, Usadel KH, Hor G: Limited value of fluorine-18 fluorodeoxyglucose positron emission tomography for the imaging of neuroendocrine tumours. Eur J Nucl Med 1998;25:79–83.
  175. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O’Doherty MJ, Smith MA: A PET study of 18FDG uptake in soft tissue masses. Eur J Nucl Med 1999;26:22–30.
  176. Gallowitsch HJ, Kresnik E, Gasser J, Kumnig G, Igerc I, Mikosch P, Lind P: F-18 fluorodeoxyglucose positron-emission tomography in the diagnosis of tumor recurrence and metastases in the follow-up of patients with breast carcinoma: a comparison to conventional imaging. Invest Radiol 2003;38:250–256.
  177. Wu D, Gambhir SS: Positron emission tomography in diagnosis and management of invasive breast cancer: current status and future perspectives. Clin Breast Cancer 2003;4(suppl 1):S55–63.
  178. Lonneux M, Borbath II, Berliere M, Kirkove C, Pauwels S: The Place of Whole-Body PET FDG for the Diagnosis of Distant Recurrence of Breast Cancer. Clin Positron Imaging 2000;3:45–49.

    External Resources

  179. Baum RP, Przetak C: Evaluation of therapy response in breast and ovarian cancer patients by positron emission tomography (PET). Q J Nucl Med 2001;45:257–268.
  180. Krak NC, Van Der Hoeven JJ, Hoekstra OS, Twisk JW, Van Der Wall E, Lammertsma AA: Measuring [(18)F]FDG uptake in breast cancer during chemotherapy: comparison of analytical methods. Eur J Nucl Med Mol Imaging 2003;30:674–681.
  181. Ohta M, Tokuda Y, Suzuki Y, Kubota M, Makuuchi H, Tajima T, Nasu S, Yasuda S, Shohtsu A: Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDP bone scintigraphy. Nucl Med Commun 2001;22:875–879.
  182. Di Chiro G: Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 1987;22:360–371.
  183. Lapela M, Eigtved A, Jyrkkio S, Grenman R, Kurki T, Lindholm P, Nuutinen J, Sutinen E, Solin O, Bjornskov I, Bretlau P, Friberg L, Holm S, Jensen M, Sand Hansen H, Minn H: Experience in qualitative and quantitative FDG PET in follow-up of patients with suspected recurrence from head and neck cancer. Eur J Cancer 2000;36:858–867.
  184. Minn H, Lapela M, Klemi PJ, Grenman R, Leskinen S, Lindholm P, Bergman J, Eronen E, Haaparanta M, Joensuu H: Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997;38:1907–1911.
  185. Burgman P, Odonoghue JA, Humm JL, Ling CC: Hypoxia-Induced increase in FDG uptake in MCF7 cells. J Nucl Med 2001;42:170–175.
  186. Clavo AC, Wahl RL: Effects of hypoxia on the uptake of tritiated thymidine, L-leucine, L-methionine and FDG in cultured cancer cells. J Nucl Med 1996;37:502–506.
  187. Clavo AC, Brown RS, Wahl RL: Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 1995;36:1625–1632.
  188. Minn H, Clavo AC, Wahl RL: Influence of hypoxia on tracer accumulation in squamous-cell carcinoma: in vitro evaluation for PET imaging. Nucl Med Biol 1996;23:941–946.
  189. Kubota R, Kubota K, Yamada S, Tada M, Ido T, Tamahashi N: Active and passive mechanisms of [fluorine-18] fluorodeoxyglucose uptake by proliferating and prenecrotic cancer cells in vivo: a microautoradiographic study. J Nucl Med 1994;35:1067–1075.
  190. Lehtio K, Oikonen V, Gronroos T, Eskola O, Kalliokoski K, Bergman J, Solin O, Grenman R, Nuutila P, Minn H: Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with [(15)O]H(2)O and [(18)F]fluoroerythronitroimidazole PET. J Nucl Med 2001;42:1643–1652.
  191. Leenders KL: PET: blood flow and oxygen consumption in brain tumors. J Neurooncol 1994;22:269–273.
  192. Bentzen L, Keiding S, Horsman MR, Falborg L, Hansen SB, Overgaard J: Feasibility of detecting hypoxia in experimental mouse tumours with 18F-fluorinated tracers and positron emission tomography – a study evaluating [18F]fluoro-2-deoxy-D-glucose. Acta Oncol 2000;39:629–637.
  193. Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, Welch MJ, Siegel BA: In vivo assessment of tumor hypoxia in lung cancer with (60)Cu-ATSM. Eur J Nucl Med Mol Imaging 2003;30:844–850.
  194. Rajendran JG, Wilson DC, Conrad EU, Peterson LM, Bruckner JD, Rasey JS, Chin LK, Hofstrand PD, Grierson JR, Eary JF, Krohn KA: [(18)F]FMISO and [(18)F]FDG PET imaging in soft tissue sarcomas: correlation of hypoxia, metabolism and VEGF expression. Eur J Nucl Med Mol Imaging 2003;30:695–704.
  195. Patt M, Sorger D, Scheunemann M, Stocklin G: Adduct of 2-[18F]FDG and 2-nitroimidazole as a putative radiotracer for the detection of hypoxia with PET: synthesis, in vitro- and in vivo-characterization. Appl Radiat Isot 2002;57:705–712.
  196. Tsukaguchi H, Tokui T, Mackenzie B, Berger UV, Chen XZ, Wang Y, Brubaker RF, Hediger MA: A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 1999;399:70–75.
  197. Patel M, McIntosh L, Bliss T, Ho D, Sapolsky R: Interactions among ascorbate, dehydroascorbate and glucose transport in cultured hippocampal neurons and glia. Brain Res 2001;916:127–135.
  198. Laggner H, Besau V, Goldenberg H: Preferential uptake and accumulation of oxidized vitamin C by THP-1 monocytic cells. Eur J Biochem 1999;262:659–665.
  199. Spielholz C, Golde DW, Houghton AN, Nualart F, Vera JC: Increased facilitated transport of dehydroascorbic acid without changes in sodium-dependent ascorbate transport in human melanoma cells. Cancer Res 1997;57:2529–2537.
  200. Savini I, D’Angelo I, Annicchiarico-Petruzzelli M, Bellincampi L, Melino G, Avigliano L: Ascorbic acid recycling in N-myc amplified human neuroblastoma cells. Anticancer Res 1998;18:819–822.
  201. Vera JC, Rivas CI, Zhang RH, Farber CM, Golde DW: Human HL-60 myeloid leukemia cells transport dehydroascorbic acid via the glucose transporters and accumulate reduced ascorbic acid. Blood 1994;84:1628–1634.
  202. Agus DB, Vera JC, Golde DW: Stromal cell oxidation: a mechanism by which tumors obtain vitamin C. Cancer Res 1999;59:4555–4558.
  203. Vera JC, Rivas CI, Fischbarg J, Golde DW: Mammalian facilitative hexose transporters mediate the transport of dehydroascorbic acid. Nature 1993;364:79–82.
  204. Rumsey SC, Kwon O, Xu GW, Burant CF, Simpson I, Levine M: Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 1997;272:18982–18989.
  205. Song J, Kwon O, Chen S, Daruwala R, Eck P, Park JB, Levine M: Flavonoid inhibition of sodium-dependent vitamin C transporter 1 (SVCT1) and glucose transporter isoform 2 (GLUT2), intestinal transporters for vitamin C and glucose. J Biol Chem 2002;277:15252–15260.
  206. Rumsey SC, Daruwala R, Al-Hasani H, Zarnowski MJ, Simpson IA, Levine M: Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 2000;275:28246–28253.
  207. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ: Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res 2003;63:1764–1768.
  208. Bavetsias V, Marriott JH, Melin C, Kimbell R, Matusiak ZS, Boyle FT, Jackman AL: Design and synthesis of Cyclopenta[g] quinazoline-based antifolates as inhibitors of thymidylate synthase and potential antitumor agents(,). J Med Chem 2000;43:1910–1926.
  209. Fung KP, Ng SW, Ha DK, Choy YM: Suppression of glucose transport of Ehrlich ascites tumour cell by interferon inducers. Chemotherapy 1986;32:458–463.
  210. North PE, Waner M, Mizeracki A, Mihm MC Jr: GLUT1: a newly discovered immunohistochemical marker for juvenile hemangiomas. Hum Pathol 2000;31:11–22.
  211. Simpson IA, Appel NM, Hokari M, Oki J, Holman GD, Maher F, Koehler-Stec EM, Vannucci SJ, Smith QR: Blood-brain barrier glucose transporter: effects of hypo- and hyperglycemia revisited. J Neurochem 1999;72:238–247.
  212. Augustin R, Carayannopoulos MO, Dowd LO, Phay JE, Moley JF, Moley KH: Identification and characterization of human glucose transporter-like protein-9 (GLUT9): alternative splicing alters trafficking. J Biol Chem 2004;279:16229–16236.
  213. Felsenstein J: Counting phylogenetic invariants in some simple cases. J Theor Biol 1991;152:357–376.
  214. Felsenstein J: Phylogenies from molecular sequences: inference and reliability. Annu Rev Genet 1988;22:521–565.
  215. Semenza GL: Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 1999;15:551–578.
  216. Wolf HJ, Desoye G: Immunohistochemical localization of glucose transporters and insulin receptors in human fetal membranes at term. Histochemistry 1993;100:379–385.
  217. Arnott G, Coghill G, McArdle HJ, Hundal HS: Immunolocalization of GLUT1 and GLUT3 glucose transporters in human placenta. Biochem Soc Trans 1994;22:272S.
  218. Takakura Y, Kuentzel SL, Raub TJ, Davies A, Baldwin SA, Borchardt RT: Hexose uptake in primary cultures of bovine brain microvessel endothelial cells. I. Basic characteristics and effects of D-glucose and insulin. Biochim Biophys Acta 1991;1070:1–10.
  219. Virgintino D, Robertson D, Monaghan P, Errede M, Bertossi M, Ambrosi G, Roncali L: Glucose transporter GLUT1 in human brain microvessels revealed by ultrastructural immunocytochemistry. J Submicrosc Cytol Pathol 1997;29:365–370.
  220. Kurosaki M, Hori T, Takata K, Kawakami H, Hirano H: Immunohistochemical localization of the glucose transporter GLUT1 in choroid plexus papillomas. Noshuyo Byori 1995;12:69–73.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50