Neurosignals 2008;16:52–62
(DOI:10.1159/000109759)

Beer and Bread to Brains and Beyond: Can Yeast Cells Teach Us about Neurodegenerative Disease?

Gitler A.D.
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pa., USA
email Corresponding Author


 goto top of outline Key Words

  • Yeast
  • Neurodegeneration
  • Parkinson’s disease
  • Huntington’s disease
  • Friedreich’s ataxia
  • Niemann-Pick disease
  • High-throughput screening

 goto top of outline Abstract

For millennia, humans have harnessed the astonishing power of yeast, producing such culinary masterpieces as bread, beer and wine. Therefore, in this new millennium, is it very farfetched to ask if we can also use yeast to unlock some of the modern day mysteries of human disease? Remarkably, these seemingly simple cells possess most of the same basic cellular machinery as the neurons in the brain. We and others have been using the baker’s yeast, Saccharomyces cerevisiae, as a model system to study the mechanisms of devastating neurodegenerative diseases such as Parkinson’s, Huntington’s, Alzheimer’s and amyotrophic lateral sclerosis. While very different in their pathophysiology, they are collectively referred to as protein-misfolding disorders because of the presence of misfolded and aggregated forms of various proteins in the brains of affected individuals. Using yeast genetics and the latest high-throughput screening technologies, we have identified some of the potential causes underpinning these disorders and discovered conserved genes that have proven effective in preventing neuron loss in animal models. Thus, these genes represent new potential drug targets. In this review, I highlight recent work investigating mechanisms of cellular toxicity in a yeast Parkinson’s disease model and discuss how similar approaches are being applied to additional neurodegenerative diseases.

Copyright © 2008 S. Karger AG, Basel


 goto top of outline References
  1. Forman MS, Trojanowski JQ, Lee VM: Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Nat Med 2004;10:1055–1063.
  2. Dobson CM: Protein folding and misfolding. Nature 2003;426:884–890.
  3. Singer MA, Lindquist S: Thermotolerance in Saccharomyces cerevisiae: the yin and yang of trehalose. Trends Biotechnol 1998;16:460–468.
  4. Varshavsky A: Regulated protein degradation. Trends Biochem Sci 2005;30:283–286.
  5. Weibezahn J, Schlieker C, Tessarz P, Mogk A, Bukau B: Novel insights into the mechanism of chaperone-assisted protein disaggregation. Biol Chem 2005;386:739–744.
  6. Young JC, Agashe VR, Siegers K, Hartl FU: Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol 2004;5:781–791.
  7. Shorter J: Hsp104, a potential weapon to combat diverse neurodegenerative disorders. Neurosignals 2008;16:63–74.
  8. Fields S, Johnston M: Cell biology: whither model organism research? Science 2005;307:1885–1886.
  9. Botstein D, Chervitz SA, Cherry JM: Yeast as a model organism. Science 1997;277:1259–1260.
  10. Botstein D, Fink GR: Yeast: an experimental organism for modern biology. Science 1988;240:1439–1443.
  11. Dolinski K, Botstein D: Changing perspectives in yeast research nearly a decade after the genome sequence. Genome Res 2005;15:1611–1619.
  12. Johansson BE, Brett IC: Changing perspective on immunization against influenza. Vaccine 2007;25:3062–3065.
  13. Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW: Systematic screen for human disease genes in yeast. Nat Genet 2002;31:400–404.
  14. Foury F: Human genetic diseases: a cross-talk between man and yeast. Gene 1997;195:1–10.
  15. Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG: Life with 6,000 genes. Science 1996;274:546, 563–547.

    External Resources

  16. Boone C, Bussey H, Andrews BJ: Exploring genetic interactions and networks with yeast. Nat Rev 2007;8:437–449.
  17. Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Davis RW, et al: Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999;285:901–906.
  18. Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, Volckaert G, Wang CY, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman E, Yu K, Bussey H, Boeke JD, Snyder M, Philippsen P, Davis RW, Johnston M: Functional profiling of the saccharomyces cerevisiae genome. Nature 2002;418:387–391.
  19. Mnaimneh S, Davierwala AP, Haynes J, Moffat J, Peng WT, Zhang W, Yang X, Pootoolal J, Chua G, Lopez A, Trochesset M, Morse D, Krogan NJ, Hiley SL, Li Z, Morris Q, Grigull J, Mitsakakis N, Roberts CJ, Greenblatt JF, Boone C, Kaiser CA, Andrews BJ, Hughes TR: Exploration of essential gene functions via titratable promoter alleles. Cell 2004;118:31–44.
  20. Hu Y, Rolfs A, Bhullar B, Murthy TV, Zhu C, Berger MF, Camargo AA, Kelley F, McCarron S, Jepson D, Richardson A, Raphael J, Moreira D, Taycher E, Zuo D, Mohr S, Kane MF, Williamson J, Simpson A, Bulyk ML, Harlow E, Marsischky G, Kolodner RD, LaBaer J: Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Res 2007;17:536–543.
  21. Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, Cao S, Caldwell KA, Caldwell GA, Marsischky G, Kolodner RD, Labaer J, Rochet JC, Bonini NM, Lindquist S: α-Synuclein blocks ER-golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 2006;313:324–328.
  22. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, Wise KJ, Lopez-Hoyo N, Jiang L, Piccirillo S, Yu H, Gerstein M, Dumont ME, Phizicky EM, Snyder M, Grayhack EJ: Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 2005;19:2816–2826.
  23. Alberti S, Gitler AD, Lindquist S: A suite of Gateway® cloning vectors for high-throughput genetic analysis in Saccharomyces cerevisiae. Yeast 2007;24:913–919.
  24. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C: Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001;294:2364–2368.
  25. Tong AH, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J, Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Menard P, Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu AM, Shapiro J, Sheikh B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J, Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H, Boone C: Global mapping of the yeast genetic interaction network. Science 2004;303:808–813.
  26. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS: Global analysis of protein expression in yeast. Nature 2003;425:737–741.
  27. Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK: Global analysis of protein localization in budding yeast. Nature 2003;425:686–691.
  28. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006;440:637–643.
  29. Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T, Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ: Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 2005;123:507–519.
  30. Chu S, DeRisi J, Eisen M, Mulholland J, Botstein D, Brown PO, Herskowitz I: The transcriptional program of sporulation in budding yeast. Science 1998;282:699–705.
  31. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature 2004;431:99–104.
  32. Giorgini F, Muchowski PJ: Screening for genetic modifiers of amyloid toxicity in yeast. Methods Enzymol 2006;412:201–222.
  33. Hughes T, Andrews B, Boone C: Old drugs, new tricks: using genetically sensitized yeast to reveal drug targets. Cell 2004;116:5–7.
  34. Outeiro TF, Lindquist S: Yeast cells provide insight into α-synuclein biology and pathobiology. Science 2003;302:1772–1775.
  35. Outeiro TF, Muchowski PJ: Molecular genetics approaches in yeast to study amyloid diseases. J Mol Neurosci 2004;23:49–60.
  36. Sturgeon CM, Kemmer D, Anderson HJ, Roberge M: Yeast as a tool to uncover the cellular targets of drugs. Biotechnol J 2006;1:289–298.
  37. Bach S, Talarek N, Andrieu T, Vierfond JM, Mettey Y, Galons H, Dormont D, Meijer L, Cullin C, Blondel M: Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nat Biotechnol 2003;21:1075–1081.
  38. Hartwell LH: Nobel lecture. Yeast and cancer. Biosci Rep 2002;22:373–394.
  39. Nurse P: The Nobel Prize and beyond: an interview with Sir Paul Nurse. Interview by Susan R. Owens. EMBO Rep 2002;3:204–206.
  40. Forman MS, Lee VM, Trojanowski JQ: Nosology of Parkinson’s disease: looking for the way out of a quagmire. Neuron 2005;47:479–482.
  41. Forno LS: Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 1996;55:259–272.
  42. Gasser T: Genetics of Parkinson’s disease. J Neurol 2001;248:833–840.
  43. Lynch T, Farrer M, Hutton M, Hardy J: Genetics of Parkinson’s disease. Science 1997;278:1212–1213.
  44. Moore DJ, West AB, Dawson VL, Dawson TM: Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 2005;28:57–87.
  45. Nussbaum RL, Polymeropoulos MH: Genetics of Parkinson’s disease. Hum Mol Genet 1997;6:1687–1691.
  46. Vila M, Przedborski S: Genetic clues to the pathogenesis of Parkinson’s disease. Nat Med 2004;10(suppl):S58–S62.
  47. Dawson TM, Dawson VL: Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003;302:819–822.
  48. Goedert M: α-Synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001;2:492–501.
  49. Irizarry MC, Growdon W, Gomez-Isla T, Newell K, George JM, Clayton DF, Hyman BT: Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain α-synuclein immunoreactivity. J Neuropathol Exp Neurol 1998;57:334–337.
  50. Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M: α-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 1998;95:6469–6473.
  51. Spillantini MG, Crowther RA, Jakes R, Cairns NJ, Lantos PL, Goedert M: Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson’s disease and dementia with Lewy bodies. Neurosci Lett 1998;251:205–208.
  52. Lee VM, Trojanowski JQ: Mechanisms of Parkinson’s disease linked to pathological α-synuclein: new targets for drug discovery. Neuron 2006;52:33–38.
  53. Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T: Aggregation of α-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 1998;152:879–884.
  54. Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL: Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997;276:2045–2047.
  55. Kruger R, Kuhn W, Muller T, Woitalla D, Graeber M, Kosel S, Przuntek H, Epplen JT, Schols L, Riess O: Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat Genet 1998;18:106–108.
  56. Zarranz JJ, Alegre J, Gomez-Esteban JC, Lezcano E, Ros R, Ampuero I, Vidal L, Hoenicka J, Rodriguez O, Atares B, Llorens V, Tortosa EG, Del Ser T, Munoz DG, De Yebenes JG: The new mutation, e46k, of α-synuclein causes parkinson and Lewy body dementia. Ann Neurol 2004;55:164–173.
  57. Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J, Hulihan M, Peuralinna T, Dutra A, Nussbaum R, Lincoln S, Crawley A, Hanson M, Maraganore D, Adler C, Cookson MR, Muenter M, Baptista M, Miller D, Blancato J, Hardy J, Gwinn-Hardy K: α-Synuclein locus triplication causes Parkinson’s disease. Science 2003;302:841.
  58. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destee A: α-Synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 2004;364:1167–1169.
  59. Ibanez P, Bonnet AM, Debarges B, Lohmann E, Tison F, Pollak P, Agid Y, Durr A, Brice A: Causal relation between α-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004;364:1169–1171.
  60. Dauer W, Przedborski S: Parkinson’s disease: mechanisms and models. Neuron 2003;39:889–909.
  61. Dawson TM: New animal models for Parkinson’s disease. Cell 2000;101:115–118.
  62. Maries E, Dass B, Collier TJ, Kordower JH, Steece-Collier K: The role of α-synuclein in Parkinson’s disease: insights from animal models. Nat Rev Neurosci 2003;4:727–738.
  63. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM: Chaperone suppression of α-synuclein toxicity in a drosophila model for Parkinson’s disease. Science 2002;295:865–868.
  64. Feany MB, Bender WW: A drosophila model of Parkinson’s disease. Nature 2000;404:394–398.
  65. Lo Bianco C, Ridet JL, Schneider BL, Deglon N, Aebischer P: α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 2002;99:10813–10818.
  66. Masliah E, Rockenstein E, Veinbergs I, Mallory M, Hashimoto M, Takeda A, Sagara Y, Sisk A, Mucke L: Dopaminergic loss and inclusion body formation in α-synuclein mice: implications for neurodegenerative disorders. Science 2000;287:1265–1269.
  67. Cao S, Gelwix CC, Caldwell KA, Caldwell GA: Torsin-mediated protection from cellular stress in the dopaminergic neurons of Caenorhabditis elegans. J Neurosci 2005;25:3801–3812.
  68. Lakso M, Vartiainen S, Moilanen AM, Sirvio J, Thomas JH, Nass R, Blakely RD, Wong G: Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. J Neurochem 2003;86:165–172.
  69. Bonini NM, Giasson BI: Snaring the function of α-synuclein. Cell 2005;123:359–361.
  70. Gitler AD, Shorter J: Prime time for α-synuclein. J Neurosci 2007;27:2433–2434.
  71. Lam YC, Bowman AB, Jafar-Nejad P, Lim J, Richman R, Fryer JD, Hyun ED, Duvick LA, Orr HT, Botas J, Zoghbi HY: ATAXIN-1 interacts with the repressor capicua in its native complex to cause SCA1 neuropathology. Cell 2006;127:1335–1347.
  72. Liu N, Bonini NM: Hosting neurotoxicity in polyglutamine disease. Cell 2006;127:1299–1300.
  73. Davidson WS, Jonas A, Clayton DF, George JM: Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J Biol Chem 1998;273:9443–9449.
  74. Jo E, Fuller N, Rand RP, St George-Hyslop P, Fraser PE: Defective membrane interactions of familial Parkinson’s disease mutant a30p α-synuclein. J Mol Biol 2002;315:799–807.
  75. Jo E, McLaurin J, Yip CM, St George-Hyslop P, Fraser PE: α-Synuclein membrane interactions and lipid specificity. J Biol Chem 2000;275:34328–34334.
  76. Kubo S, Nemani VM, Chalkley RJ, Anthony MD, Hattori N, Mizuno Y, Edwards RH, Fortin DL: A combinatorial code for the interaction of α-synuclein with membranes. J Biol Chem 2005;280:31664–31672.
  77. McLean PJ, Kawamata H, Ribich S, Hyman BT: Membrane association and protein conformation of α-synuclein in intact neurons: effect of Parkinson’s disease-linked mutations. J Biol Chem 2000;275:8812–8816.
  78. Perrin RJ, Woods WS, Clayton DF, George JM: Interaction of human α-synuclein and Parkinson’s disease variants with phospholipids: structural analysis using site-directed mutagenesis. J Biol Chem 2000;275:34393–34398.
  79. Rochet JC, Outeiro TF, Conway KA, Ding TT, Volles MJ, Lashuel HA, Bieganski RM, Lindquist SL, Lansbury PT: Interactions among α-synuclein, dopamine, and biomembranes: some clues for understanding neurodegeneration in parkinson’s disease. J Mol Neurosci 2004;23:23–34.
  80. Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr: Vesicle permeabilization by protofibrillar α-synuclein: Implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 2001;40:7812–7819.
  81. Flower TR, Clark-Dixon C, Metoyer C, Yang H, Shi R, Zhang Z, Witt SN: YGR198w (YPP1) targets A30P α-synuclein to the vacuole for degradation. J Cell Biol 2007;177:1091–1104.
  82. Witt SN, Flower TR: α-Synuclein, oxidative stress and apoptosis from the perspective of a yeast model of Parkinson’s disease. FEMS Yeast Res 2006;6:1107–1116.
  83. Flower TR, Chesnokova LS, Froelich CA, Dixon C, Witt SN: Heat shock prevents α-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol 2005;351:1081–1100.
  84. Dixon C, Mathias N, Zweig RM, Davis DA, Gross DS: α-Synuclein targets the plasma membrane via the secretory pathway and induces toxicity in yeast. Genetics 2005;170:47–59.
  85. Volles MJ, Lansbury PT Jr: Relationships between the sequence of α-synuclein and its membrane affinity, fibrillization propensity, and yeast toxicity. J Mol Biol 2007;366:1510–1522.
  86. Ho LW, Carmichael J, Swartz J, Wyttenbach A, Rankin J, Rubinsztein DC: The molecular biology of Huntington’s disease. Psychol Med 2001;31:3–14.
  87. DiFiglia M: Clinical genetics. II. Huntington’s disease: from the gene to pathophysiology. Am J Psychiatry 1997;154:1046.
  88. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. The Huntington’s Disease Collaborative Research Group. Cell 1993;72:971–983.
  89. Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F, Lin B, Kalchman MA, et al: The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 1993;4:398–403.
  90. Bates GP, Mangiarini L, Wanker EE, Davies SW: Polyglutamine expansion and Huntington’s disease. Biochem Soc Trans 1998;26:471–475.
  91. Ross CA: Polyglutamine pathogenesis: emergence of unifying mechanisms for Huntington’s disease and related disorders. Neuron 2002;35:819–822.
  92. Becher MW, Kotzuk JA, Sharp AH, Davies SW, Bates GP, Price DL, Ross CA: Intranuclear neuronal inclusions in huntington’s disease and dentatorubral and pallidoluysian atrophy: correlation between the density of inclusions and IT15 CAG triplet repeat length. Neurobiol Dis 1998;4:387–397.
  93. Rubinsztein DC, Leggo J, Coles R, Almqvist E, Biancalana V, Cassiman JJ, Chotai K, Connarty M, Crauford D, Curtis A, Curtis D, Davidson MJ, Differ AM, Dode C, Dodge A, Frontali M, Ranen NG, Stine OC, Sherr M, Abbott MH, Franz ML, Graham CA, Harper PS, Hedreen JC, Hayden MR, et al: Phenotypic characterization of individuals with 30–40 CAG repeats in the Huntington disease (HD) gene reveals HD cases with 36 repeats and apparently normal elderly individuals with 36–39 repeats. Am J Hum Genet 1996;59:16–22.
  94. Krobitsch S, Lindquist S: Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc Natl Acad Sci USA 2000;97:1589–1594.
  95. Meriin AB, Zhang X, He X, Newnam GP, Chernoff YO, Sherman MY: Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J Cell Biol 2002;157:997–1004.
  96. Muchowski PJ, Schaffar G, Sittler A, Wanker EE, Hayer-Hartl MK, Hartl FU: Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc Natl Acad Sci USA 2000;97:7841–7846.
  97. Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, Fields S: Altered transcription in yeast expressing expanded polyglutamine. Proc Natl Acad Sci USA 2001;98:13201–13206.
  98. Duennwald ML, Jagadish S, Muchowski PJ, Lindquist S: Flanking sequences profoundly alter polyglutamine toxicity in yeast. Proc Natl Acad Sci USA 2006;103:11045–11050.
  99. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ: A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. Nat Genet 2005;37:526–531.
  100. Willingham S, Outeiro TF, DeVit MJ, Lindquist SL, Muchowski PJ: Yeast genes that enhance the toxicity of a mutant huntingtin fragment or α-synuclein. Science 2003;302:1769–1772.
  101. Steffan JS, Thompson LM: Targeting aggregation in the development of therapeutics for the treatment of Huntington’s disease and other polyglutamine repeat diseases. Expert Opin Ther Targets 2003;7:201–213.
  102. Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL, Thompson LM, Lindquist S, Muchowski PJ, Wanker EE: Green tea (–)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington’s disease models. Hum Mol Genet 2006;15:2743–2751.
  103. Taylor JP, Hardy J, Fischbeck KH: Toxic proteins in neurodegenerative disease. Science 2002;296:1991–1995.
  104. Durr A, Cossee M, Agid Y, Campuzano V, Mignard C, Penet C, Mandel JL, Brice A, Koenig M: Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996;335:1169–1175.
  105. Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F, Monros E, Rodius F, Duclos F, Monticelli A, et al: Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996;271:1423–1427.
  106. Babcock M, de Silva D, Oaks R, Davis-Kaplan S, Jiralerspong S, Montermini L, Pandolfo M, Kaplan J: Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 1997;276:1709–1712.
  107. Wilson RB, Roof DM: Respiratory deficiency due to loss of mitochondrial DNA in yeast lacking the frataxin homologue. Nat Genet 1997;16:352–357.
  108. Barbeau A: Friedreich’s ataxia 1980: an overview of the physiopathology. Can J Neurol Sci 1980;7:455–468.
  109. Bulteau AL, O’Neill HA, Kennedy MC, Ikeda-Saito M, Isaya G, Szweda LI: Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity. Science 2004;305:242–245.
  110. Muhlenhoff U, Richhardt N, Ristow M, Kispal G, Lill R: The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins. Hum Mol Genet 2002;11:2025–2036.
  111. Morris JA, Carstea ED: Niemann-Pick C disease: cholesterol handling gone awry. Mol Med Today 1998;4:525–531.
  112. Vanier MT, Wenger DA, Comly ME, Rousson R, Brady RO, Pentchev PG: Niemann-Pick disease group C: clinical variability and diagnosis based on defective cholesterol esterification. A collaborative study on 70 patients. Clin Genet 1988;33:331–348.
  113. Vanier MT, Millat G: Niemann-Pick disease type C. Clin Genet 2003;64:269–281.
  114. Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF, 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA: Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 1997;277:228–231.
  115. Malathi K, Higaki K, Tinkelenberg AH, Balderes DA, Almanzar-Paramio D, Wilcox LJ, Erdeniz N, Redican F, Padamsee M, Liu Y, Khan S, Alcantara F, Carstea ED, Morris JA, Sturley SL: Mutagenesis of the putative sterol-sensing domain of yeast Niemann Pick C-related protein reveals a primordial role in subcellular sphingolipid distribution. J Cell Biol 2004;164:547–556.
  116. Berger AC, Hanson PK, Wylie Nichols J, Corbett AH: A yeast model system for functional analysis of the Niemann-Pick type C protein 1 homolog, Ncr1p. Traffic 2005;6:907–917.
  117. Aguzzi A, Heikenwalder M, Miele G: Progress and problems in the biology, diagnostics, and therapeutics of prion diseases. J Clin Invest 2004;114:153–160.
  118. Aguzzi A, Polymenidou M: Mammalian prion biology: one century of evolving concepts. Cell 2004;116:313–327.
  119. Prusiner SB: Molecular biology and pathogenesis of prion diseases. Trends Biochem Sci 1996;21:482–487.
  120. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE: Prion protein biology. Cell 1998;93:337–348.
  121. Prusiner SB: Prion diseases and the BSE crisis. Science 1997;278:245–251.
  122. Bolton DC, McKinley MP, Prusiner SB: Identification of a protein that purifies with the scrapie prion. Science 1982;218:1309–1311.
  123. Prusiner SB: Prions. Proc Natl Acad Sci USA 1998;95:13363–13383.

    External Resources

  124. Weissmann C: Molecular biology of prion diseases. Trends Cell Biol 1994;4:10–14.
  125. Horwich AL, Weissman JS: Deadly conformations – protein misfolding in prion disease. Cell 1997;89:499–510.
  126. Lindquist S: Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell 1997;89:495–498.
  127. Prusiner SB, Groth D, Serban A, Koehler R, Foster D, Torchia M, Burton D, Yang SL, DeArmond SJ: Ablation of the prion protein (PrP) gene in mice prevents scrapie and facilitates production of anti-PrP antibodies. Proc Natl Acad Sci USA 1993;90:10608–10612.
  128. Sailer A, Bueler H, Fischer M, Aguzzi A, Weissmann C: No propagation of prions in mice devoid of PrP. Cell 1994;77:967–968.
  129. Steele AD, Emsley JG, Ozdinler PH, Lindquist S, Macklis JD: Prion protein (PrPc) positively regulates neural precursor proliferation during developmental and adult mammalian neurogenesis. Proc Natl Acad Sci USA 2006;103:3416–3421.
  130. Zhang CC, Steele AD, Lindquist S, Lodish HF: Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA 2006;103:2184–2189.
  131. Ma J, Lindquist S: De novo generation of a PrPSc-like conformation in living cells. Nat Cell Biol 1999;1:358–361.
  132. Li A, Harris DA: Mammalian prion protein suppresses Bax-induced cell death in yeast. J Biol Chem 2005;280:17430–17434.
  133. Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006;443:787–795.
  134. Reverter-Branchat G, Cabiscol E, Tamarit J, Ros J: Oxidative damage to specific proteins in replicative and chronological-aged Saccharomyces cerevisiae: common targets and prevention by calorie restriction. J Biol Chem 2004;279:31983–31989.
  135. Lee HC, Wei YH: Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood) 2007;232:592–606.
  136. Lee HC, Wei YH: Mitochondrial alterations, cellular response to oxidative stress and defective degradation of proteins in aging. Biogerontology 2001;2:231–244.
  137. Chen Q, Ding Q, Keller JN: The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration. Biogerontology 2005;6:1–13.
  138. Kaeberlein M, McVey M, Guarente L: Using yeast to discover the fountain of youth. Sci Aging Knowledge Environ 2001;2001:pe1.

    External Resources

  139. McMurray MA, Gottschling DE: Aging and genetic instability in yeast. Curr Opin Microbiol 2004;7:673–679.
  140. Chen Q, Thorpe J, Keller JN: α-Synuclein alters proteasome function, protein synthesis, and stationary phase viability. J Biol Chem 2005;280:30009–30017.
  141. Outeiro TF, Kontopoulos E, Altmann S, Kufareva I, Strathearn KE, Amore AM, Volk CB, Maxwell MM, Rochet JC, McLean PJ, Young AB, Abagyan R, Feany MB, Hyman BT, Kazantsev A: Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson’s disease. Science 2007;317:516–519.
  142. Bagriantsev S, Liebman S: Modulation of Aβ42 low-n oligomerization using a novel yeast reporter system. BMC Biol 2006;4:32.

 goto top of outline Author Contacts

Aaron D. Gitler
Department of Cell and Developmental Biology
University of Pennsylvania School of Medicine
Philadelphia, PA 19104 (USA)
Tel. +1 215 573 8251, Fax +1 215 898 9871, E-Mail gitler@mail.med.upenn.edu


 goto top of outline Article Information

Published online: December 5, 2007
Number of Print Pages : 11
Number of Figures : 3, Number of Tables : 0, Number of References : 142


 goto top of outline Publication Details

Neurosignals

Vol. 16, No. 1, Year 2008 (Cover Date: December 2007)

Journal Editor: Ip, N.Y. (Hong Kong)
ISSN: 1424–862X (print), 1424–8638 (Online)

For additional information: http://www.karger.com/NSG


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.