Journal Mobile Options
Table of Contents
Vol. 16, No. 4, 2008
Issue release date: November 2008
Section title: Paper
Neurosignals 2008;16:300–317
(DOI:10.1159/000123040)

Systems Biology Perspectives on Cerebellar Long-Term Depression

Ogasawara H.a, b · Doi T.c · Kawato M.b
aNational Institute of Information and Communications Technology, bATR Computational Neuroscience Laboratories, Kyoto, and cOsaka Bioscience Institute, Osaka, Japan
email Corresponding Author

Dr. Hideaki Ogasawara

ATR Computational Neuroscience Laboratories

2-2-2, Hikaridai, Seikacho, Kyoto 619-0288 (Japan)

Tel. +81 774 95 2688, Fax +81 774 95 1259

E-Mail ogahide@atr.jp


References

  1. Ito M: The Cerebellum and Neural Control. New York, Raven Press, 1984.
  2. Thach WT: A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 1998;70:177–188.
  3. Kawato M: Internal models for motor control and trajectory planning. Curr Opin Neurobiol 1999;9:718–727.
  4. Ito M: Cerebellar long-term depression: characterization, signal transduction, and functional roles. Physiol Rev 2001;81:1143–1195.
  5. Yamamoto K, Kobayashi Y, Takemura A, Kawano K, Kawato M: Cerebellar plasticity and the ocular following response. Ann NY Acad Sci 2002;978:439–454.
  6. Glickstein M: Thinking about the cerebellum. Brain 2006;129:288–290.
  7. Ito M: Cerebellar circuitry as a neuronal machine. Prog Neurobiol 2006;78:272–303.
  8. Knudsen EI: Supervised learning in the brain. J Neurosci 1994;14:3985–3997.
  9. Doya K: What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Netw 1999;12:961–974.
  10. Marr D: A theory of cerebellar cortex. J Physiol 1969;202:437–470.
  11. Ito M: Neurophysiological aspects of the cerebellar motor control system. Int J Neurol 1970;7:162–176.
  12. Albus JS: A theory of cerebellar function. Math Biosci 1971;10:25–61.

    External Resources

  13. Ito M, Sakurai M, Tongroach P: Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol 1982;324:113–134.
  14. Sakurai M: Calcium is an intracellular mediator of the climbing fiber in induction of cerebellar long-term depression. Proc Natl Acad Sci USA 1990;87:3383–3385.
  15. Lev-Ram V, Makings LR, Keitz PF, Kao JP, Tsien RY: Long-term depression in cerebellar Purkinje neurons results from coincidence of nitric oxide and depolarization- induced Ca2+ transients. Neuron 1995;15:407–415.
  16. Miyata M, Finch EA, Khiroug L, Hashimoto K, Hayasaka S, Oda SI, Inouye M, Takagishi Y, Augustine GJ, Kano M: Local calcium release in dendritic spines required for long-term synaptic depression. Neuron 2000;28:233–244.
  17. Wang SS, Denk W, Häusser M: Coincidence detection in single dendritic spines mediated by calcium release. Nat Neurosci 2000;3:1266–1273.
  18. Safo P, Regehr WG: Timing dependence of the induction of cerebellar LTD. Neuropharmacology 2007;54:213–218.
  19. De Schutter E: Cerebellar long-term depression might normalize excitation of Purkinje cells: a hypothesis. Trends Neurosci 1995;18:291–295.
  20. Llinás R, Lang EJ, Welsh JP: The cerebellum, LTD, and memory: alternative views. Learn Mem 1997;3:445–455.
  21. Daniel H, Levenes C, Crepel F: Cellular mechanisms of cerebellar LTD. Trends Neurosci 1998;21:401–407.
  22. Ito M: Mechanisms of motor learning in the cerebellum. Brain Res 2000;886:237–245.
  23. Ito M: The molecular organization of cerebellar long-term depression. Nat Rev Neurosci 2002;3:896–902.
  24. Hartell NA: Parallel fiber plasticity. Cerebellum 2002;1:3–18.
  25. Jörntell H, Hansel C: Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 2006;52:227–238.
  26. Iino M: Ca2+-dependent inositol 1,4,5-trisphosphate and nitric oxide signaling in cerebellar neurons. J Pharmacol Sci 2006;100:538–544.
  27. Lev-Ram V, Wong ST, Storm DR, Tsien RY: A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP. Proc Natl Acad Sci USA 2002;99:8389–8393.
  28. Lev-Ram V, Mehta SB, Kleinfeld D, Tsien RY: Reversing cerebellar long-term depression. Proc Natl Acad Sci USA 2003;100:15989–15993.
  29. Coesmans M, Weber JT, De Zeeuw CI, Hansel C: Bidirectional parallel fiber plasticity in the cerebellum under climbing fiber control. Neuron 2004;44:691–700.
  30. Ogasawara H, Doi T, Doya K, Kawato M: Nitric oxide regulates input specificity of long-term depression and context dependence of cerebellar learning. PLoS Comput Biol 2007;3:e179.
  31. Gally JA, Montague PR, Reeke GN Jr, Edelman GM: The NO hypothesis: possible effects of a short-lived, rapidly diffusible signal in the development and function of the nervous system. Proc Natl Acad Sci USA 1990;87:3547–3551.
  32. Lancaster JR Jr: Simulation of the diffusion and reaction of endogenously produced nitric oxide. Proc Natl Acad Sci USA 1994;91:8137–8141.
  33. Shibuki K, Kimura S: Dynamic properties of nitric oxide release from parallel fibres in rat cerebellar slices. J Physiol 1997;498:443–452.
  34. Wu J, Wang Y, Rowan MJ, Anwyl R: Evidence for involvement of the neuronal isoform of nitric oxide synthase during induction of long-term potentiation and long-term depression in the rat dentate gyrus in vitro. Neuroscience 1997;78:393–398.
  35. Casado M, Dieudonne S, Ascher P: Presynaptic N-methyl-D-aspartate receptors at the parallel fiber-Purkinje cell synapse. Proc Natl Acad Sci USA 2000;97:11593–11597.
  36. Qiu DL, Knöpfel T: An NMDA receptor/nitric oxide cascade in presynaptic parallel fiber-Purkinje neuron long-term potentiation. J Neurosci 2007;27:3408–3415.
  37. Susswein AJ, Katzoff A, Miller N, Hurwitz I: Nitric oxide and memory. Neuroscientist 2004;10:153–162.
  38. Nagao S, Ito M: Subdural application of hemoglobin to the cerebellum blocks vestibuloocular reflex adaptation. Neuroreport 1991;2:193–196.
  39. Li J, Smith SS, McElligott JG: Cerebellar nitric oxide is necessary for vestibulo-ocular reflex adaptation, a sensorimotor model of learning. J Neurophysiol 1995;74:489–494.
  40. Yanagihara D, Kondo I: Nitric oxide plays a key role in adaptive control of locomotion in cat. Proc Natl Acad Sci USA 1996;93:13292–13297.
  41. Hansel C, de Jeu M, Belmeguenai A, Houtman SH, Buitendijk GH, Andreev D, De Zeeuw CI, Elgersma Y: αCaMKII is essential for cerebellar LTD and motor learning. Neuron 2006;51:835–843.
  42. Ahn S, Ginty DD, Linden DJ: A late phase of cerebellar long-term depression requires activation of CaMKIV and CREB. Neuron 1999;23:559–568.
  43. Lee KH, Thompson RF: Multiple memory mechanisms in the cerebellum? Neuron 2006;51:680–682.
  44. Yuzaki M: The δ2 glutamate receptor: a key molecule controlling synaptic plasticity and structure in Purkinje cells. Cerebellum 2004;3:89–93.
  45. Hirano T: Cerebellar regulation mechanisms learned from studies on GluRδ2. Mol Neurobiol 2006;33:1–16.
  46. Safo PK, Regehr WG: Endocannabinoids control the induction of cerebellar LTD. Neuron 2005;48:647–659.
  47. Sanes JR, Lichtman JW: Can molecules explain long-term potentiation? Nat Neurosci 1999;2:597–604.
  48. Kuroda S, Schweighofer N, Kawato M: Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 2001;21:5693–5702.
  49. Doi T, Kuroda S, Michikawa T, Kawato M: Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 2005;25:950–961.
  50. Abraham WC, Robins A: Memory retention – the synaptic stability versus plasticity dilemma. Trends Neurosci 2005;28:73–78.
  51. Ferrell JE Jr: Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci 1996;21:460–466.
  52. Ferrell JE Jr: How regulated protein translocation can produce switch-like responses. Trends Biochem Sci 1998;23:461–465.
  53. Ferrell JE Jr: Building a cellular switch: more lessons from a good egg. Bioessays 1999;21:866–870.
  54. Ferrell JE Jr: Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 2002;14:140–148.
  55. Tyson JJ, Chen KC, Novak B: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003;15:221–231.
  56. Kolch W, Calder M, Gilbert D: When kinases meet mathematics: the systems biology of MAPK signalling. FEBS Lett 2005;579:1891–1895.
  57. Goldbeter A, Koshland DE Jr: An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci USA 1981;78:6840–6844.
  58. Bierman A: Studies on the effects of structure on the behavior of enzyme systems. Bull Math Biophys 1954;16:203–257.

    External Resources

  59. Lisman JE: A mechanism for memory storage insensitive to molecular turnover: a bistable autophosphorylating kinase. Proc Natl Acad Sci USA 1985;82:3055–3057.
  60. Crick F: Memory and molecular turnover. Nature 1984;312:101.
  61. Impey S, Obrietan K, Storm DR: Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 1999;23:11–14.
  62. Peyssonnaux C, Eychene A: The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 2001;93:53–62.
  63. Sweatt JD: Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004;14:311–317.
  64. Thomas GM, Huganir RL: MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 2004;5:173–183.
  65. Qi M, Elion EA: MAP kinase pathways. J Cell Sci 2005;118:3569–3572.
  66. Kolch W: Coordinating ERK/MAPK signalling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 2005;6:827–837.
  67. Huang CY, Ferrell JE Jr: Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA 1996;93:10078–10083.
  68. Ferrell JE Jr, Machleder EM: The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 1998;280:895–898.
  69. Bhalla US, Iyengar R: Emergent properties of networks of biological signaling pathways. Science 1999;283:381–387.
  70. Bhalla US, Ram PT, Iyengar R: MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 2002;297:1018–1023.
  71. Markevich NI, Hoek JB, Kholodenko BN: Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J Cell Biol 2004;164:353–359.
  72. Tanaka K, Augustine GJ: A positive feedback protein kinase loop causes sustained PKC activation during cerebellar long-term depression. 36th Annual Meeting of the Society for Neuroscience, Atlanta 2006, pp 732.738/G737.
  73. Petersen CC, Malenka RC, Nicoll RA, Hopfield JJ: All-or-none potentiation at CA3-CA1 synapses. Proc Natl Acad Sci USA 1998;95:4732–4737.
  74. Montgomery JM, Madison DV: Discrete synaptic states define a major mechanism of synapse plasticity. Trends Neurosci 2004;27:744–750.
  75. O’Connor DH, Wittenberg GM, Wang SS: Graded bidirectional synaptic plasticity is composed of switch-like unitary events. Proc Natl Acad Sci USA 2005;102:9679–9684.
  76. Bower JM, Beeman D: The Book of GENESIS: Exploring Realistic Neural Models with the GEneral NEural SImulation System, Internet ed. 2003.
  77. Vayttaden SJ, Bhalla US: Developing complex signaling models using GENESIS/Kinetikit. Sci STKE 2004;2004:pl4.

    External Resources

  78. Ermentrout GB, Keizer JE: Qualitative analysis of differential equations; in Fall CP, Marland ES, Wagner JM, Tyson JJ (eds): Computational Cell Biology: An Introduction to Computer Modeling in Molecular Cell Biology. New York, Springer, 2002, pp 378–409.
  79. Angeli D, Ferrell JE Jr, Sontag ED: Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc Natl Acad Sci USA 2004;101:1822–1827.
  80. Tanaka K, Khiroug L, Santamaria F, Doi T, Ogasawara H, Ellis-Davies GC, Kawato M, Augustine GJ: Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator. Neuron 2007;54:787–800.
  81. Wang SS, Augustine GJ: Confocal imaging and local photolysis of caged compounds: dual probes of synaptic function. Neuron 1995;15:755–760.
  82. Duguid I, Sjöström PJ: Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 2006;16:312–322.
  83. Berridge MJ: Neuronal calcium signaling. Neuron 1998;21:13–26.
  84. Iino M: Biphasic Ca2+ dependence of inositol 1,4,5-trisphosphate-induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 1990;95:1103–1122.
  85. Bezprozvanny I, Watras J, Ehrlich BE: Bell-shaped calcium-response curves of Ins(1, 4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 1991;351:751–754.
  86. Hartell NA: Strong activation of parallel fibers produces localized calcium transients and a form of LTD that spreads to distant synapses. Neuron 1996;16:601–610.
  87. Okubo Y, Kakizawa S, Hirose K, Iino M: Cross talk between metabotropic and ionotropic glutamate receptor-mediated signaling in parallel fiber-induced inositol 1,4,5-trisphosphate production in cerebellar Purkinje cells. J Neurosci 2004;24:9513–9520.
  88. Finch EA, Augustine GJ: Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites. Nature 1998;396:753–756.
  89. Hernjak N, Slepchenko BM, Fernald K, Fink CC, Fortin D, Moraru II, Watras J, Loew LM: Modeling and analysis of calcium signaling events leading to long-term depression in cerebellar Purkinje cells. Biophys J 2005;89:3790–3806.
  90. Fujiwara A, Hirose K, Yamazawa T, Iino M: Reduced IP3 sensitivity of IP3 receptor in Purkinje neurons. Neuroreport 2001;12:2647–2651.
  91. Yuste R, Majewska A, Holthoff K: From form to function: calcium compartmentalization in dendritic spines. Nat Neurosci 2000;3:653–659.
  92. Tsay D, Yuste R: On the electrical function of dendritic spines. Trends Neurosci 2004;27:77–83.
  93. Lee KJ, Kim H, Rhyu IJ: The roles of dendritic spine shapes in Purkinje cells. Cerebellum 2005;4:97–104.
  94. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, Yoshioka T, Kawato M: Human cerebellar activity reflecting an acquired internal model of a new tool. Nature 2000;403:192–195.
  95. Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M: Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA 2003;100:5461–5466.
  96. Imamizu H, Kuroda T, Yoshioka T, Kawato M: Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci 2004;24:1173–1181.
  97. De Schutter E, Bower JM: An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 1994;71:375–400.
  98. Sasagawa S, Ozaki Y, Fujita K, Kuroda S: Prediction and validation of the distinct dynamics of transient and sustained ERK activation. Nat Cell Biol 2005;7:365–373.
  99. Harris KM, Kater SB: Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci 1994;17:341–371.
  100. Nimchinsky EA, Sabatini BL, Svoboda K: Structure and function of dendritic spines. Annu Rev Physiol 2002;64:313–353.
  101. Carlisle HJ, Kennedy MB: Spine architecture and synaptic plasticity. Trends Neurosci 2005;28:182–187.
  102. Masugi-Tokita M, Tarusawa E, Watanabe M, Molnar E, Fujimoto K, Shigemoto R: Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling. J Neurosci 2007;27:2135–2144.
  103. Kennedy MB: Signal-processing machines at the postsynaptic density. Science 2000;290:750–754.
  104. Grant SG: The synapse proteome and phosphoproteome: a new paradigm for synapse biology. Biochem Soc Trans 2006;34:59–63.
  105. Boeckers TM: The postsynaptic density. Cell Tissue Res 2006;326:409–422.
  106. Hwang JI, Kim HS, Lee JR, Kim E, Ryu SH, Suh PG: The interaction of phospholipase C-β3 with Shank2 regulates mGluR-mediated calcium signal. J Biol Chem 2005;280:12467–12473.
  107. Mikoshiba K: Inositol 1,4,5-trisphosphate IP3 receptors and their role in neuronal cell function. J Neurochem 2006;97:1627–1633.
  108. Franks KM, Sejnowski TJ: Complexity of calcium signaling in synaptic spines. Bioessays 2002;24:1130–1144.
  109. Augustine GJ, Santamaria F, Tanaka K: Local calcium signaling in neurons. Neuron 2003;40:331–346.
  110. Naoki H, Sakumura Y, Ishii S: Local signaling with molecular diffusion as a decoder of Ca2+ signals in synaptic plasticity. Mol Syst Biol 2005;1:2005.0027.
  111. Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xul P, Wijayawardana SR, Hanfelt J, Nakagawa T, Sheng M, Peng J: Relative and absolute quantification of postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteomics 2006;5:1158–1170.
  112. Calabrese B, Wilson MS, Halpain S: Development and regulation of dendritic spine synapses. Physiology (Bethesda) 2006;21:38–47.
  113. Levchenko A, Bruck J, Sternberg PW: Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc Natl Acad Sci USA 2000;97:5818–5823.
  114. Harding A, Tian T, Westbury E, Frische E, Hancock JF: Subcellular localization determines MAP kinase signal output. Curr Biol 2005;15:869–873.
  115. Breitkreutz A, Tyers M: Cell signaling. A sophisticated scaffold wields a new trick. Science 2006;311:789–790.
  116. Irvine EE, von Hertzen LS, Plattner F, Giese KP: αCaMKII autophosphorylation: a fast track to memory. Trends Neurosci 2006;29:459–465.
  117. Lisman J, Schulman H, Cline H: The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 2002;3:175–190.
  118. Petersen JD, Chen X, Vinade L, Dosemeci A, Lisman JE, Reese TS: Distribution of postsynaptic density (PSD)-95 and Ca2+/calmodulin-dependent protein kinase II at the PSD. J Neurosci 2003;23:11270–11278.
  119. Miller P, Zhabotinsky AM, Lisman JE, Wang XJ: The stability of a stochastic CaMKII switch: dependence on the number of enzyme molecules and protein turnover. PLoS Biol 2005;3:e107.
  120. Gillespie DT: Exact stochastic simulation of coupled chemical reactions. J Phys Chem 1977;81:2340–2361.
  121. Santamaria F, Wils S, De Schutter E, Augustine GJ: Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 2006;52:635–648.
  122. Klafter J, Sokolov IM: Anomalous diffusion spreads its wings. Phys World 2005;18:29–32.
  123. Coggan JS, Bartol TM, Esquenazi E, Stiles JR, Lamont S, Martone ME, Berg DK, Ellisman MH, Sejnowski TJ: Evidence for ectopic neurotransmission at a neuronal synapse. Science 2005;309:446–451.
  124. Stiles J, Bartol T: Monte Carlo methods for simulating realistic synaptic microphysiology using MCell; in De Schutter E (ed): Computational Neuroscience: Realistic Modeling for Experimentalists. Boca Raton, CRC Press, 2001, pp 87–127.
  125. Slepchenko BM, Schaff JC, Carson JH, Loew LM: Computational cell biology: spatiotemporal simulation of cellular events. Annu Rev Biophys Biomol Struct 2002;31:423–441.
  126. Turner TE, Schnell S, Burrage K: Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 2004;28:165–178.
  127. Bhalla US: Signaling in small subcellular volumes. I. Stochastic and diffusion effects on individual pathways. Biophys J 2004;87:733–744.
  128. Bhalla US: Signaling in small subcellular volumes. II. Stochastic and diffusion effects on synaptic network properties. Biophys J 2004;87:745–753.
  129. Vasudeva K, Bhalla US: Adaptive stochastic-deterministic chemical kinetic simulations. Bioinformatics 2004;20:78–84.
  130. Inda MC, Delgado-Garcia JM, Carrion AM: Acquisition, consolidation, reconsolidation, and extinction of eyelid conditioning responses require de novo protein synthesis. J Neurosci 2005;25:2070–2080.
  131. Boyden ES, Katoh A, Raymond JL: Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 2004;27:581–609.
  132. Gittis AH, du Lac S: Intrinsic and synaptic plasticity in the vestibular system. Curr Opin Neurobiol 2006;16:385–390.
  133. Fusi S, Drew PJ, Abbott LF: Cascade models of synaptically stored memories. Neuron 2005;45:599–611.
  134. Kawato M: From ‘understanding the brain by creating the brain’ toward manipulative neuroscience. Philos Trans R Soc Lond B Biol Sci 2008 (in press).
  135. Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D: Activity-induced changes of spine morphology. Hippocampus 2002;12:585–591.
  136. Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H: Structure-stability-function relationships of dendritic spines. Trends Neurosci 2003;26:360–368.
  137. Dudai Y: The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 2004;55:51–86.
  138. Lynch G, Rex CS, Gall CM: LTP consolidation: substrates, explanatory power, and functional significance. Neuropharmacology 2007;52:12–23.
  139. Sdrulla AD, Linden DJ: Double dissociation between long-term depression and dendritic spine morphology in cerebellar Purkinje cells. Nat Neurosci 2007;10:546–548.
  140. Wang XB, Yang Y, Zhou Q: Independent expression of synaptic and morphological plasticity associated with long-term depression. J Neurosci 2007;27:12419–12429.
  141. Lang C, Barco A, Zablow L, Kandel ER, Siegelbaum SA, Zakharenko SS: Transient expansion of synaptically connected dendritic spines upon induction of hippocampal long-term potentiation. Proc Natl Acad Sci USA 2004;101:16665–16670.
  142. Webb BL, Hirst SJ, Giembycz MA: Protein kinase C isoenzymes: a review of their structure, regulation and role in regulating airways smooth muscle tone and mitogenesis. Br J Pharmacol 2000;130:1433–1452.
  143. Barry OP, Kazanietz MG: Protein kinase C isozymes, novel phorbol ester receptors and cancer chemotherapy. Curr Pharm Des 2001;7:1725–1744.
  144. Metzger F, Kapfhammer JP: Protein kinase C: its role in activity-dependent Purkinje cell dendritic development and plasticity. Cerebellum 2003;2:206–214.
  145. Hernandez AI, Blace N, Crary JF, Serrano PA, Leitges M, Libien JM, Weinstein G, Tcherapanov A, Sacktor TC: Protein kinase Mζ synthesis from a brain mRNA encoding an independent protein kinase Cζ catalytic domain. Implications for the molecular mechanism of memory. J Biol Chem 2003;278:40305–40316.
  146. Oster H, Eichele G, Leitges M: Differential expression of atypical PKCs in the adult mouse brain. Brain Res Mol Brain Res 2004;127:79–88.
  147. Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E: Persistent activation of the ζ isoform of protein kinase C in the maintenance of long-term potentiation. Proc Natl Acad Sci USA 1993;90:8342–8346.
  148. Osten P, Valsamis L, Harris A, Sacktor TC: Protein synthesis-dependent formation of protein kinase Mζ in long-term potentiation. J Neurosci 1996;16:2444–2451.
  149. Ling DS, Benardo LS, Serrano PA, Blace N, Kelly MT, Crary JF, Sacktor TC: Protein kinase Mζ is necessary and sufficient for LTP maintenance. Nat Neurosci 2002;5:295–296.
  150. Serrano P, Yao Y, Sacktor TC: Persistent phosphorylation by protein kinase Mζ maintains late-phase long-term potentiation. J Neurosci 2005;25:1979–1984.
  151. Hrabetova S, Sacktor TC: Bidirectional regulation of protein kinase Mζ in the maintenance of long-term potentiation and long-term depression. J Neurosci 1996;16:5324–5333.
  152. Puls A, Schmidt S, Grawe F, Stabel S: Interaction of protein kinase Cζ with ZIP, a novel protein kinase C-binding protein. Proc Natl Acad Sci USA 1997;94:6191–6196.
  153. Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC: Storage of spatial information by the maintenance mechanism of LTP. Science 2006;313:1141–1144.
  154. Shema R, Sacktor TC, Dudai Y: Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKMζ. Science 2007;317:951–953.
  155. Kelly MT, Crary JF, Sacktor TC: Regulation of protein kinase Mζ synthesis by multiple kinases in long-term potentiation. J Neurosci 2007;27:3439–3444.
  156. Klann E, Dever TE: Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev Neurosci 2004;5:931–942.
  157. Kelleher RJ 3rd, Govindarajan A, Tonegawa S: Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 2004;44:59–73.
  158. Sutton MA, Schuman EM: Dendritic protein synthesis, synaptic plasticity, and memory. Cell 2006;127:49–58.
  159. Pfeiffer BE, Huber KM: Current advances in local protein synthesis and synaptic plasticity. J Neurosci 2006;26:7147–7150.
  160. Martin KC, Zukin RS: RNA trafficking and local protein synthesis in dendrites: an overview. J Neurosci 2006;26:7131–7134.
  161. Muslimov IA, Nimmrich V, Hernandez AI, Tcherepanov A, Sacktor TC, Tiedge H: Dendritic transport and localization of protein kinase Mζ mRNA: implications for molecular memory consolidation. J Biol Chem 2004;279:52613–52622.
  162. Drier EA, Tello MK, Cowan M, Wu P, Blace N, Sacktor TC, Yin JC: Memory enhancement and formation by atypical PKM activity in Drosophila melanogaster. Nat Neurosci 2002;5:316–324.
  163. Lynch MA: Long-term potentiation and memory. Physiol Rev 2004;84:87–136.
  164. Kakegawa W, Yuzaki M: A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation. Proc Natl Acad Sci USA 2005;102:17846–17851.
  165. Huang Y, Man HY, Sekine-Aizawa Y, Han Y, Juluri K, Luo H, Cheah J, Lowenstein C, Huganir RL, Snyder SH: S-nitrosylation of N-ethylmaleimide-sensitive factor mediates surface expression of AMPA receptors. Neuron 2005;46:533–540.
  166. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS: Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 2005;6:150–166.
  167. Sossa KG, Beattie JB, Carroll RC: AMPAR exocytosis through NO modulation of PICK1. Neuropharmacology 2007;53:92–100.
  168. Endo S, Nairn AC, Greengard P, Ito M: Thr123 of rat G-substrate contributes to its action as a protein phosphatase inhibitor. Neurosci Res 2003;45:79–89.
  169. Launey T, Endo S, Sakai R, Harano J, Ito M: Protein phosphatase 2A inhibition induces cerebellar long-term depression and declustering of synaptic AMPA receptor. Proc Natl Acad Sci USA 2004;101:676–681.
  170. Pilpel Y, Segal M: Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur J Neurosci 2004;19:3151–3164.
  171. Gómez J, Martínez de Aragón A, Bonay P, Pitton C, García A, Silva A, Fresno M, Alvarez F, Rebollo A: Physical association and functional relationship between protein kinase Cζ and the actin cytoskeleton. Eur J Immunol 1995;25:2673–2678.
  172. Chodniewicz D, Zhelev DV: Chemoattractant receptor-stimulated F-actin polymerization in the human neutrophil is signaled by two distinct pathways. Blood 2003;101:1181–1184.
  173. Sun R, Gao P, Chen L, Ma D, Wang J, Oppenheim JJ, Zhang N: Protein kinase Cζ is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Res 2005;65:1433–1441.
  174. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL: Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 2003;302:1775–1779.
  175. Stapulionis R, Kolli S, Deutscher MP: Efficient mammalian protein synthesis requires an intact F-actin system. J Biol Chem 1997;272:24980–24986.
  176. Chung HJ, Steinberg JP, Huganir RL, Linden DJ: Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 2003;300:1751–1755.
  177. Matsuda S, Launey T, Mikawa S, Hirai H: Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J 2000;19:2765–2774.
  178. Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R: Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 2006;51:213–225.
  179. Morrow DA, Gersh BJ, Braunwald E: Chronic coronary artery disease; in Zipes DP, Libby P, Bonow R, Braunwald E (eds): Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, Saunders, 2004.
  180. Rosendorff C, Black HR, Cannon CP, Gersh BJ, Gore J, Izzo JL Jr, Kaplan NM, O’Connor CM, O’Gara PT, Oparil S: Treatment of hypertension in the prevention and management of ischemic heart disease: a scientific statement from the American Heart Association Council for High Blood Pressure Research and the Councils on Clinical Cardiology and Epidemiology and Prevention. Circulation 2007;115:2761–2788.
  181. Tassorelli C, Blandini F, Greco R, Nappi G: Nitroglycerin enhances cGMP expression in specific neuronal and cerebrovascular structures of the rat brain. J Chem Neuroanat 2004;27:23–32.
  182. Messerschmidt A, Macieira S, Velarde M, Bädeker M, Benda C, Jestel A, Brandstetter H, Neuefeind T, Blaesse M: Crystal structure of the catalytic domain of human atypical protein kinase Cι reveals interaction mode of phosphorylation site in turn motif. J Mol Biol 2005;352:918–931.
  183. Linden DJ: A protein synthesis-dependent late phase of cerebellar long-term depression. Neuron 1996;17:483–490.
  184. Nader K, Schafe GE, LeDoux JE: The labile nature of consolidation theory. Nat Rev Neurosci 2000;1:216–219.
  185. Sara SJ: Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Mem 2000;7:73–84.
  186. Nader K: Memory traces unbound. Trends Neurosci 2003;26:65–72.
  187. Shutoh F, Ohki M, Kitazawa H, Itohara S, Nagao S: Memory trace of motor learning shifts transsynaptically from cerebellar cortex to nuclei for consolidation. Neuroscience 2006;139:767–777.
  188. Boyden ES, Katoh A, Pyle JL, Chatila TA, Tsien RW, Raymond JL: Selective engagement of plasticity mechanisms for motor memory storage. Neuron 2006;51:823–834.
  189. Bockamp E, Maringer M, Spangenberg C, Fees S, Fraser S, Eshkind L, Oesch F, Zabel B: Of mice and models: improved animal models for biomedical research. Physiol Genomics 2002;11:115–132.
  190. Choudhary J, Grant SG: Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci 2004;7:440–445.
  191. Ptacek J, Snyder M: Charging it up: global analysis of protein phosphorylation. Trends Genet 2006;22:545–554.
  192. Li KW: Proteomics of synapse. Anal Bioanal Chem 2007;387:25–28.
  193. Linding R, Jensen LJ, Ostheimer GJ, van Vugt MA, Jorgensen C, Miron IM, Diella F, Colwill K, Taylor L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park JG, Samson LD, Woodgett JR, Russell RB, Bork P, Yaffe MB, Pawson T: Systematic discovery of in vivo phosphorylation networks. Cell 2007;129:1415–1426.
  194. Tyson JJ, Chen K, Novak B: Network dynamics and cell physiology. Nat Rev Mol Cell Biol 2001;2:908–916.
  195. Csete ME, Doyle JC: Reverse engineering of biological complexity. Science 2002;295:1664–1669.
  196. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: simple building blocks of complex networks. Science 2002;298:824–827.
  197. Barabasi AL, Oltvai ZN: Network biology: understanding the cell’s functional organization. Nat Rev Genet 2004;5:101–113.
  198. Papin JA, Hunter T, Palsson BO, Subramaniam S: Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 2005;6:99–111.
  199. Albert R: Scale-free networks in cell biology. J Cell Sci 2005;118:4947–4957.
  200. Qi Y, Ge H: Modularity and dynamics of cellular networks. PLoS Comput Biol 2006;2:e174.
  201. Alon U: Network motifs: theory and experimental approaches. Nat Rev Genet 2007;8:450–461.
  202. Han Z, Vondriska TM, Yang L, Robb MacLellan W, Weiss JN, Qu Z: Signal transduction network motifs and biological memory. J Theor Biol 2007;246:755–761.