Journal Mobile Options
Table of Contents
Vol. 21, No. 3, 2008
Issue release date: June 2008
Skin Pharmacol Physiol 2008;21:136–149

Nanotechnology, Cosmetics and the Skin: Is There a Health Risk?

Nohynek G.J. · Dufour E.K. · Roberts M.S.
aL’Oréal Research and Development, Worldwide Safety Department, Asnières, France; bDepartment of Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, Qld., Australia

Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in


Cosmetic formulations may contain nano-emulsions and microscopic vesicles consisting of traditional cosmetic materials, although it is uncertain whether they should be qualified as actual nanomaterials. Vesicle materials do not penetrate into living human skin. Vesicle formulations may enhance or reduce skin absorption of ingredients, albeit at a limited scale. Sunscreens contain TiO2 or ZnO nanoparticles (NP), which are efficient UV filters. A number of studies suggest that insoluble NP do not penetrate into or through human skin. The results of in vivo toxicity tests showed that TiO2 and ZnO NP are non-toxic. In vitro and in vivo cytotoxicity, genotoxicity, photogenotoxicity, acute toxicity, sensitisation and ecotoxicology studies on TiO2 NP found no difference in the safety profile of micro- or nano-sized materials, all of which were non-toxic. Although some in vitro investigations on TiO2 particles reported cell uptake, oxidative cell damage or genotoxicity, these results may be secondary to phagocytosis of cells exposed to excessive particle concentrations. Studies on wear debris nano- and microparticles support the traditional view that toxicity of small particles is related to their chemistry, rather than their particle size. There is little evidence supporting a general rule that adverse effects of particles on the skin or other tissues increase with smaller particle size, or produce novel toxicities relative to those of larger particles. Overall, the current evidence suggests that nano-sized cosmetic or sunscreen ingredients pose no potential risk to human health, whereas their use in sunscreens has large benefits, such as the protection of human skin against skin cancer.

Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.


  1. Maynard AD: Nanotechnology: A Research Strategy for Addressing Risk. Project on Emerging Nanotechnologies. Washington, Woodrow Wilson International Center for Scholars, 2006.
  2. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins RPF, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdoerster G: The potential risks of nanomaterials: a review conducted out for ECETOC. Particle Fibre Toxicol 2006;3:11.
  3. Hoet PHM, Brüske-Hohlfeld I, Sata OV: Nanoparticles – Known and unknown health risks. J Nanotechnol 2004;2:1–15.
  4. Oberdörster G, Oberdörster E, Oberdörster J: Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005;113:823–839.
  5. US Environmental Protection Agency: Nanotechnology Workgroup/EPA’s Science Policy Council. Nanotechnology White Paper, 68–70, December 2, 2005.
  6. Sonneville-Aubrun O, Simonnet JT, L’Alloret F: Nanoemulsions: a new vehicle for skincare products. Adv Colloid Interface Sci 2004;108/109:145–149.

    External Resources

  7. Junginger HE, Hofland HEJ, Bouwstra JA: Liposomes and niosomes: interactions with human skin. Cosmet Toiletries 1991;106:45–50.
  8. Lopez C: Focus on the supramolecular structure of milk fat in dairy products. Reprod Nutr Dev 2005;45:497–511.
  9. Van den Bergh BAI, Vroom J, Gerritsen H, Junginger HE, Bouwstra JA: Interactions of elastic and rigid vesicles with human skin in vitro: electron microscopy and two-photon excitation microscopy. Biochim Biophys Act 1999;1461:155–173.
  10. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H: Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 2001;21:1818–1825.

    External Resources

  11. Popov AP, Lademann J, Priezzhev AV, Myllylä R: Effect of size of TiO2 nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J Biomed Optics 2005;10:1–9.
  12. Gélis C, Girard S, Mavon A, Delverdier M, Paillous N, Vicendo P: Assessment of the skin photoprotective capacities of an organo-mineral broad-spectrum sunblock on two ex vivo skin models. Photodermatol Photoimmunol Photomed 2003;19:242–253.
  13. Nohynek GJ, Schaefer H: Benefit and risk of organic ultraviolet filters. Regul Toxicol Pharmacol 2001;33:285–291.
  14. World Health Organization: INTERSUN: The Global UV Project. Protection against Exposure to Ultraviolet Radiation. Geneva, World Health Organization, 1998.
  15. Schaefer H, Redelmaier T, Nohynek GJ: Pharmacokinetics and topical application of drugs; in Freedberg IM, Eisen AZ, Wolff K, Austen FK, Goldsmith LA, Katz SI (eds): Fitzpatrick’s Dermatology in General Medicine. New York, McGraw-Hill, 2003, chapt 241, pp 2313–2318.
  16. Schaefer H, Redelmeier TE: In vivo measurements of percutaneous absorption; in Schaefer H, Redelmeier TE (eds): Skin Barrier: Principles of Percutaneous Absorption. Basel, Karger, 1996, pp 120–129.
  17. Magnusson BM, Anissimov YG, Cross SE, Roberts MS: Molecular size as the main determinant of solute maximum flux across the skin. J Invest Dermatol 2004;122:993–999.
  18. Ravenzwaay B, Leibold E: A comparison between in vitro rat and human and in vivo skin penetration studies. Hum Exp Toxicol 2004;23:421–430.
  19. SCCNFP: Opinion of the Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers Concerning Titanium Dioxide. Brussels, European Commission, 2000.
  20. Tan MH, Commens CA, Burnett L, Snitch P: A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Aust J Dermatol 1996;37:185–187.
  21. Dussert AS, Gooris E: Characterisation of the mineral content of a physical sunscreen emulsion and its distribution onto human stratum corneum. Int J Cosmet Sci 1997;19:119–129.
  22. Lademann J, Weigmann HJ, Rickmeier CH, Barthelmes H, Schaefer H, Mueller G, Sterry W: Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Skin Physiol 1999;2:247–256.

    External Resources

  23. Pflücker F, Wendel V, Hohenberg H, Gärtner E, Witt T, Pfeiffer S, Wepf R, Gers-Berlag H: The human stratum corneum layer: an effective barrier against dermal uptake of different forms of topically applied micronised titanium dioxide. Skin Pharmacol Appl Skin Physiol 2001;14(suppl 1):92–97.

    External Resources

  24. Schulz J, Hohenberg F, Pflücker F, Gärtner B, Will T, Pfeiffer S, Wepf R, Wendel V, Gers-Berlag H, Wittern KP: Distribution of sunscreens on skin. Adv Drug Deliv Rev 2002;54(suppl 1):S157–S163.
  25. Gamer A, Leibold E, van Ravenzway B: The in vitro absorption of microfine ZnO and TiO2 through porcine skin. Toxicol In Vitro 2006;20:301–307.
  26. Mavon A, Miquel C, Lejeune O, Payre B, Moretto P: In vitro percutaneous absorption and in vivo stratum corneum distribution of an organic and a mineral sunscreen. Skin Pharmacol Physiol 2007;20:10–20.
  27. Lekki J, Stachura Z, Dabros W, Stachura J, Menzel F, Reinert T, Butz T, Gontier E, Ynsa MD, Moretto P, Kertesz Z, Szikszai Z, Kisss AZ: On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res 2007;B260:174–177.
  28. Umbreit T, Weaver JL, Miller TJ, Zhang J, Shah MA, Khan MA, Stratmeyer MEE: Toxicology of TiO2 nanoparticles. 1. Characterisation and tissue distribution in subcutaneously and intravenously injected mice (abstract). Toxicologist 2007;1386.
  29. Cross SE, Innes B, Roberts MS, Tsuzuki T, Robertson TA, McCormick P: Human skin penetration of sunscreen nanoparticles: in vitro assessment of a novel micronised zinc oxide formulation. Skin Pharmacol Physiol 2007;20:148–154.
  30. SCCNFP: Opinion of the Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers Concerning Zinc Oxide. Colipa No S 76. Brussels, European Commission, 2003.
  31. Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ: Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 2003;111:1202–1208.
  32. Cormier M, Trautman J, Kim HL: Skin treatment apparatus for sustained transdermal drug delivery. USP WO 01/41864 A1, 2001.
  33. Blundell G, Henderson HJ, Price EW: Soil particles in the tissues of the foot in endemic elephantiasis of the lower legs. Ann Trop Med Parasitol 1989;83:381–385.
  34. Lademann J, Otberg N, Richter H, Weigmann HJ, Lindemann U, Schaefer H, Sterry W: Investigation of folllicular penetration of topically applied substances. Skin Pharmacol Appl Skin Physiol 2001;14(suppl 1):17–22.
  35. Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA: Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006;91:159–165.
  36. Kraeling ME, Gopee NV, Roberts DW, Ogunsola OA, Walker NJ, Yu WW, Colvin WL, Howard PC, Bronaugh RL: Evaluation of in vitro penetration of quantum dot nanoparticles into human skin (abstract). Toxicologist 2007;1397.
  37. Gopee NV, Roberts DW, Webb P, Cozart C, Siitonen P, Warbritton AR, Walker NJ, Yu WW, Colvin VL, Howard PC: Penetration of nanoscale quantum dots in dermabraded mouse skin. FDA Science Forum, Abstract B-38, 2006.
  38. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H: Skin penetration and distribution of polymeric nanocapsules. J Control Release 2004;99:53–62.
  39. Rouse JG, Yang J, Ryman-Rasmussen JP, Barron AR, Monteiro-Riviere NA: Effects of mechanical flexion on the penetration of fullerene amino acid-derivatized peptide nanoparticles through skin. Nano Lett 2007;7:155–160.
  40. Baroli B, Ennas MG, Loffredo F, Isola M, Pinna R, López-Quintela MA: Penetration of metallic nanoparticles in human full-thickness skin. J Invest Dermatol 2007;127:1701–1712.
  41. Benson HAE: Transdermal drug delivery: penetration enhancement techniques. Curr Drug Deliv 2005;2:23–33.
  42. Kogan A, Garti N: Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 2006;123–126:369–385.
  43. Izquierdo P, Wiechers JW, Escribano E, Garcia-Celma MJ, Tadros TF, Esquena J, Dederen JC, Solans C: A study on the influence of emulsion droplet size on the skin penetration of tetracaine. Skin Pharmacol Physiol 2007;20:263–270.
  44. Choi MJ, Maibach HI: Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol Physiol 2005;18:209–219.
  45. Luengo J, Weiss B, Schneider M, Ehlers A, Stracke F, Konig K, Kostka KH, Lehr CM, Schaefer UF: Influence of nanoencapsulation on human skin transport of flufenamic acid. Skin Pharmacol Physiol 2006;19:190–197.
  46. Yu HY, Liao HM: Triamcinolone permeation from different liposome formulations through rat skin in vitro. Int J Pharm 1996;127:1–7.
  47. Du Plessis J, Ramachandran C, Weiner N, Muller DG: The influence of particle size of liposomes on the deposition of drug into skin. Int J Pharm 1994;103:277–282.
  48. Verma DD, Verma S, Blume G, Fahr A: Particle size of liposomes influences dermal delivery of substances into the skin. Int J Pharm 2003;258:141–151.
  49. Ganesan M, Weiner N: Influence of liposomal drug entrapment on percutaneous absorption. Int J Pharm 1984;20:134–154.

    External Resources

  50. Schreier H, Bouwstra JA: Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. Int J Pharm 1994;30:1–15.
  51. Honeywell-Nguyen PL, Gooris GS, Bouwstra JA: Quantitative assessment of the transport of elastic and rigid vesicle components and a model drug from these vesicle formulations into human skin in vivo. J Invest Dermatol 2004;123:902–910.
  52. Breme HJ, Helsen JA: Metals and implants; in Helsen JA, Breme HJ (eds): Metals as Biomaterials. Chichester, Wiley 1998, pp 37–72.
  53. Amstutz HC, Campbell P, Kossovsky N, Clarke IC: Mechanism and clinical significance of wear debris-induced osteolysis. Clin Orthop Relat Res 1992;276:7–18.

    External Resources

  54. Hirakawa K, Bauer TW, Stulberg BN, Wilde AH: Comparison and quantification of wear debris of failed total hip and knee arthroplasty. J Biomed Mater Res 1996;31:257–263.
  55. Yamamoto A, Honma R, Sumita M, Hanawa K: Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res 2004;68A:244–256.
  56. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro 2005;19:975–983.
  57. Olivier V, Duval JL, Hindie M, Poukletaut P, Nagel MD: Comparative particle-induced cytotoxicity towards macrophages and fibroblasts. Cell Biol Toxicol 2003;19:145–159.
  58. Choi MG, Koh HS, Kuess D, O’Connor D, Mathur A, Truskey GA, Rubin J, Zhou DX, Sung KL: Effects of titanium particle size on osteoblast functions in vitro and in vivo. Proc Natl Acad Sci USA 2005;102:4578–4583.
  59. Garnett MC, Kallinteri P: Nanomedicines and nanotoxicology: some physiological principles. Occup Med 2006;56:307–311.
  60. Yoshikawa S: Biological response to a foreign body. J Jap Soc Biomat 1991;9:94–103.
  61. Görög P, Pearson JD, Kakkar VV: Generation of reactive oxygen metabolites by phagocytosing endothelial cells. Artherosclerosis 1998;72:19–27.

    External Resources

  62. Schins RP: Mechanism of genotoxicity of particles and fibers. Inhal Toxicol 2002;14:57–78.
  63. International Conference on Harmonization: Genotoxicity: Guidance on Specific Aspects of Regulatory Genotoxicity Tests for Pharmaceuticals (ICH Topic S2A). 1996.
  64. Korting HC, Zienecke H, Schäfer-Korting M, Braun-Falco O: Liposome encapsulation improves efficacy of betamethasone dipropionate in atopic eczema but not in psoriasis vulgaris. Eur J Clin Pharmacol 1990;39:349–351.
  65. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsmann VZ, Maynard A, Baron PZ: Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health 2003;66:1909–1926.
  66. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang Y, Riviere JE: Multi-wall carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005;155:377–384.
  67. Long TC, Saleh N, Tilton RD, Lowry GV, Veronesi B: Titanium dioxide (P25) produces reactive oxygen species in immortalized microglia (BV2): implications for nanoparticle neurotoxicity. Environ Sci Technol 2006;40:4346–4352.
  68. Schilling M, Besselmann M, Müller M, Strecker M, Ringelstein EB, Kiefer R: Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 2005;196:209–297.

    External Resources

  69. Hardman R: A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 2006;114:165–172.
  70. Monteiro-Riviere NA, Inman AO, Wang YY, Nemanich RJ: Surfactant effects on carbon nanotube interactions with human keratinocytes. Nanomedicine 2005;1:293–299.
  71. Monteiro-Riviere NA, Inman AO: Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006;44:1070–1078.
  72. Sayes CM, Warheit DB, Austman KD, Colvin VI: Nano-TiO2 anatase vs rutile particles: a cytotoxicity and inflammatory response study with human dermal fibroblasts and lung epithelial cells. Toxicologist 2006;90:318.
  73. Warheit DB, Webb TR, Sayes CM, Colvin VL, Reed KL: Pulmonary instillation studies with nanoscale TiO2, rods and dots in rats: toxicity is not dependent upon particle size and surface area. Toxicol Sci 2006;91:227–236.
  74. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Imhof V, Gehr P: Ultrafine particles cross cellular membranes by non-phagocytotic mechanisms in lungs and in cultured cells. Environ Health Perspect 2005;113:1555–1560.
  75. NTP/NIEHS: Developing Experimental Approaches for the Evaluation of Toxicological Interactions of Nanoscale Materials. Gainesville, 2004.
  76. Nakagawa Y, Wakuri S, Sakamoto K, Tanaka N: The photogenotoxicity of titanium dioxide particles. Mutat Res 1997;394:125–132.
  77. Theogaraj E, Riley S, Hughes L, Maier M, Kirkland D: An investigation of the photo-clastogenic potential of ultrafine titanium dioxide. Mutat Res 2007;634:205–219.
  78. Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM: Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk assessment. Toxicol Lett 2007;171:99–110.
  79. EU Scientific Committee on Toxicity, Ecotoxicity and the Environment: Opinion on the risk assessment of zinc metal, zinc chloride, sulphate, distearate, phosphate and zinc oxide. 39th Plenary Meet, 2003.
  80. Dufour EK, Kumaravel T, Nohynek GJ, Kirkland D, Toutain H: Clastogenicity, photo-clastogenicity or pseudo-photo-clastogenicity? Genotoxic effects of ZnO in the dark, in pre-irradiated or simultaneously irradiated Chinese hamster ovary cells. Mutat Res 2006;607:215–224.
  81. Schäfer-Korting M, Korting HC, Ponce- Paschal E: Liposomal tretinoin for uncomplicated acne vulgaris. Clin Invest 1994;72:1086–1091.
  82. Gunther C, Kecskes S, Staks T, Tauber U: Percutaneous absorption of methylprednisolone aceponate following topical application of Avantan lotion on intact, inflamed and stripped skin of male volunteers. Skin Pharmacol Appl Skin Physiol 1998;11:35–42.
  83. Walker SL, Hawk JLM, Young AR: Acute and chronic effects of ultraviolet radiation on the skin; in Freedberg IM, Eisen AZ, Wolff K, Austen FK, Goldsmith LA, Katz SI (eds): Fitzpatrick’s Dermatology in General Medicine, ed 6. New York, McGraw-Hill, 2003, chapt 134, pp 1275–1282.
  84. Pinheiro T, Allon J, Alves LC, Verissimo A, Filipe P, Silva JN, Silva R: The influence of corneocyte structure on the interpretation of permeation profiles of nanoparticles across skin. Nucl Instrum Methods Phys Res 2007;B260:119–123.
  85. Korting HC, Schmid MH, Hartinger A, Maierhofer G, Stolz W, Braun-Falco O: Evidence for the phagocytosis of intact oligomellar liposomes by human keratinocytes in vitro and consecutive intracellular disintegration. J Microencapsul 1993;10:223–228.
  86. Committee for Proprietary Medicinal Products: ICH Notes for Guidance on Repeated Dose Toxicity. London, EMEA, 2000.
  87. Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K: Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharmacol 2001;175:191–199.
  88. Bermudez E, Mangum JB, Asgharian B, Wong BA, Reverdy E, Janszen DB, Hext PM, Warheit DB, Everitt JI: Long-term pulmonary responses of three laboratory rodent species to subchronic inhalation of pigmentary TiO2 particles. Toxicol Sci 2002;70:86–97.
  89. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JJ: Pulmonary responses of mice, rats and hamsters to subchronic inhalation of ultrafine TiO2 particles. Toxicol Sci 2004;77:347–357.
  90. Warheit DB, Webb TR, Reed KL, Frerichs S, Sayes CM: Pulmonary toxicity study in rats with three forms of ultrafine TiO2 particles: differential responses related to surface properties. Toxicology 2007;230:90–104.
  91. Li J, Li Q, Xu J, Wai X, Liu R, Li Y, Ma J, Li W: Comparative study on the acute pulmonary toxicity induced by 3 and 20 nm TiO2 primary particles in mice. Exp Toxicol Pharmacol 2007;24:239–244.

    External Resources

  92. Chen Y, Chen J, Dong J, Jin YX: Comparing study of the effect of nanosized silicon dioxide and microsized silicon dioxide on fibrogenensis in rats. Toxicol Ind Health 2004;20:21–27.
  93. Warheit DB, Webb TR, Colvin VL, Reed KL, Sayes CM: Pulmonary bioassays studies with nanoscale and fine-quartz particles in rats: toxicity is not dependent upon particle size but on surface characteristics. Toxicol Sci 2007;95:270–280.
  94. Baker GL, Gupta A, Clark ML, Valenzuela BR, Staska LM, Harbo SJ, Pierce JT, Dill JA: Inhalation toxicity and lung toxicokinetics of C60 fullerene nanoparticles and microparticles. Toxicol Sci 2008;101:122–131.
  95. Beckett WS, Chalupa DF, Pauly-Brown A, Speers DM, Stewart JC, Frampton MW, Utell MJ, Huang LS, Cox C, Zareba W: Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: a human inhalation study. Am J Respir Crit Care Med 2005;171:1129–1135.
  96. Ji JH, Jung JH, Kim SS, Yoon JU, Park JD, Choi BS, Chung YH, Kwon IH, Jeong J, Han BS, Shin JH, Sung JH, Song KS, Yu IJ: Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague Daley rats. Inhal Toxicol 2007;19:857–871.
  97. Wallace L, Howard-Reed C: Continuous monitoring of ultrafine, fine and coarse particles in a residence for 18 months in 1999–2000. J Air Waste Manag Assoc 2002;52:828–844.

    External Resources

  98. Bundesamt für Risikobewertung: Nanotechnologie und Lichtschutz. 2006.
  99. Therapeutics Goods Administration: A review of the scientific literature on the safety of nanoparticles titanium dioxide or zinc oxide in sunscreens. 2006.
  100. Wiebert P, Sanchez-Crespo A, Seitz J, Falk R, Philipson K, Kreyling WG, Moeller W, Sommerer K, Larsson S, Svartengren M: Negligible clearance of ultrafine particles retained in healthy and affected human lungs. Eur Respir J 2006;28:286–290.
  101. Wiebert P, Sanchez-Crespo A, Falk R, Philipson K, Lundlin A, Larsson S, Moeller W, Kreyling WG, Svartengren M: No significant translocation of inhaled 35-nm carbon particles to the circulation in humans. Inhal Toxicol 2006;18:741–747.
  102. Afshari A, Matson U, Ekberg LE: Characterisation of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air 2005;15:141–150.
  103. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, Ravenszwaay B: Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 2007, E-pub ahead of print. DOI 10.1007/s00204-007-0253-y.
  104. Nohynek GJ, Lademann J, Ribaud C, Roberts MS: Grey goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit Rev Toxicol 2007;37:1–27.
  105. EU Scientific Committee on Emerging and Newly Identified Health Risks. Opinion on the Scientific Aspects of the Existing and Proposed Definitions Relating to Products of Nanoscience and Nanotechnologies. Brussels, 29 November, 2007. http://ec.
  106. SunSmart. Cancer Council of Victorial Health Promotion Foundation, Australia, 2007. At:
  107. Heinlaan M, Ivask A, Blinova I, Dubourgier HC, Kahru A: Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyrus. Chemosphere, in print, 2008.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50