Journal Mobile Options
Table of Contents
Vol. 16, No. 1-2, 2009
Issue release date: October 2008
J Mol Microbiol Biotechnol 2009;16:91–108

Ralstonia eutropha Strain H16 as Model Organism for PHA Metabolism and for Biotechnological Production of Technically Interesting Biopolymers

Reinecke F. · Steinbüchel A.
Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany

Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in


The Gram-negative, facultative chemolithoautotrophic bacterium Ralstonia eutropha has been intensively investigated for almost 50 years. Today it is the best studied ‘Knallgas’ bacterium and producer of poly(3-hydroxybutyric acid). This polyester provides the basis for renewable resource-based biodegradable plastic materials and has attracted much biotechnological interest. The polymer is accumulated in large amounts in the cell and can be used for various applications ranging from replacement of fossil resource-based bulk plastics to high-value special purpose polymers. To further enhance productivity and to allow tailormade poly(hydroxyalkanoic acids) (PHA) with different monomer compositions by metabolic engineering, the knowledge of metabolic pathways and of the biochemical properties of the enzymes involved is essential. Furthermore, proteins covering the PHA granule surface, which are referred to as phasins, and fusions of these phasins to other proteins are promising candidates for various protein technologies. The recently published genome sequence of strain H16 allows researchers to take a closer look at the genetic potential of this versatile bacterium. R. eutropha is, however, not limited to PHAs and to PHA-related polymers like poly(mercaptoalkanoic acids) as it can also be employed for production of a range of other interesting polymers including polyamides like cyanophycin.

Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.


  1. Abe T, Kobayashi T, Saito T: Properties of a novel intracellular poly(3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J Bacteriol 2005;187:6982–6990.
  2. Aboulmagd E, Voss I, Oppermann-Sanio FB, Steinbüchel A: Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria Corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida. Biomacromolecules 2001;2:1338–1342.
  3. Antonio RV, Steinbüchel A, Rehm BHA: Analysis of in vivo substrate specificity of the PHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinant Escherichia coli. FEMS Microbiol Lett 2000;182:111–117.
  4. Banki MR, Gerngross TU, Wood DW: Novel and economical purification of recombinant proteins: intein-mediated protein purification using in vivo polyhydroxybutyrate (PHB) matrix association. Protein Sci 2005;14:1387–1395.
  5. Baptist J, Werber F: Poly-β-hydroxybutyric acid – a naturally occurring thermoplastic material. Soc Plast Eng Trans 1964;4:245–250.
  6. Berg H, Ziegler K, Piotukh H, Baier K, Lockau W: Biosynthesis of the cyanobacterial reserve polymer multi-L-arginyl-poly-L-aspartic acid (cyanophycin). Mechanism of the cyanophycin synthetase reaction studied with synthetic primers. Eur J Biochem 2000;267:5561–5570.
  7. Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L: Constitutive expression of the β-ketothiolase gene in transgenic plants. A major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 2002;128:1282–1290.
  8. Bowien B, Schlegel HG: Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol 1981;35:405–452.
  9. Brämer CO, Steinbüchel A: The methylcitric acid pathway in Ralstonia eutropha: new genes identified in propionate metabolism. Microbiology 2001;147:2203–2214.
  10. Burdon KL: Fatty material in bacteria and fungi revealed by staining dried, fixed slide preparations. J Bacteriol 1946;52:665–678.
  11. Cook A, Schlegel H: Metabolite concentrations in Alcaligenes eutrophus H 16 and a mutant defective in poly-β-hydroxybutyrate synthesis. Arch Microbiol 1978;119:231–235.
  12. Davis D, Doudoroff M, Stanier R, Mandel M: Proposal to reject the genus Hydrogenomonas: taxonomic implications. Int J Syst Bacteriol 1969;19:375–390.

    External Resources

  13. Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z: Formation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 1998;64:177–186.
  14. Diniz SC, Voss I, Steinbüchel A: Optimization of cyanophycin production in recombinant strains of Pseudomonas putida and Ralstonia eutropha employing elementary mode analysis and statistical experimental design. Biotechnol Bioeng 2006;93:698–717.
  15. Doi Y, Kawaguchi Y, Nakamura Y, Kunioka M: Nuclear magnetic resonance studies of poly(3-hydroxybutyrate) and polyphosphate metabolism in Alcaligenes eutrophus. Appl Environ Microbiol 1989;55:2932–2938.
  16. Doi Y, Segawa A, Nakamura S, Kunioka M: Production of biodegradable copolyesters by Alcaligenes eutrophus; in Dawes EA (ed): Novel Biodegradable Microbial Polymers. Dordrecht, Kluwer Academic, 1990, pp 37–48.
  17. Doi Y, Tamaki A, Kunioka M, Soga K: Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids. Makromol Chem Rapid Commun 1987;8:631–635.
  18. Eberz G, Hogrefe C, Kortlüke C, Kamienski A, Friedrich B: Molecular cloning of structural and regulatory hydrogenase (hox) genes of Alcaligenes eutrophus H16. J Bacteriol 1986;168:636–641.
  19. Ewering C, Brämer CO, Bruland N, Behtke A, Steinbüchel A: Occurrence and expression of tricarboxylate synthases in Ralstonia eutropha. Appl Microbiol Biotechnol 2006a;71:80–89.
  20. Ewering C, Heuser F, Benölken JK, Brämer CO, Steinbüchel A: Metabolic engineering of strains of Ralstonia eutropha and Pseudomonas putida for biotechnological production of 2-methylcitric acid. Metabol Eng 2006b;8:587–602.
  21. Ewering C, Lütke-Eversloh T, Luftmann H, Steinbüchel A: Identification of novel sulfur-containing bacterial polyesters: biosynthesis of poly(3-hydroxy-S-propyl-ω-thioalkanoates) containing thioether linkages in the side chains. Microbiology 2002;148:1397–1406.
  22. Füchtenbusch B, Fabritius D, Steinbüchel A: Incorporation of 3-hydroxy-2-methylbutyric acid into polyhydroxyalkanoic acids by axenic cultures in defined media. FEMS Microbiol Lett 1996;138:153–160.

    External Resources

  23. Füchtenbusch B, Wullbrandt D, Steinbüchel A: Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from waste oil remaining from the production of rhamnose as sole carbon source. Appl Microbiol Biotechnol 2000;53:167–172.
  24. Füser G, Steinbüchel A: Analysis of genome sequences for genes of cyanophycin metabolism: identifying putative cyanophycin metabolizing prokaryotes. Macromol Biosci 2007;7:278–296.
  25. Gebauer B, Jendrossek D: Assay of poly(3-hydroxybutyrate) depolymerase activity and product determination. Appl Environ Microbiol 2006;72:6094–6100.
  26. Gerngross TU, Reilly P, Stubbe J, Sinskey AJ, Peoples OP: Immunocytochemical analysis of poly-β-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of PHB granules. J Bacteriol 1993;175:5289–5293.
  27. Gerngross TU, Snell KD, Peoples OP, Sinskey AJ: Overexpression and purification of the soluble polyhydroxyalkanoate synthase from Alcaligenes eutrophus: evidence for a required posttranslational modification for catalytic activity. Biochemistry 1994;33:9311–9320.
  28. Gorenflo V, Schmack G, Vogel R, Steinbüchel A: Development of a process for the biotechnological large-scale production of 4HV-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2001;2:45–57.
  29. Gorenflo V, Steinbüchel A, Marose S, Rieseberg M, Scheper T: Quantification of bacterial PHA by Nile Red staining. Appl Microbiol Biotechnol 1999;51:765–772.
  30. Gottschalk G: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. I. Ermittlung der 14C-Verteilung in Poly-β-hydroxybuttersäure. Arch Mikrobiol 1964a; 47:225–229.
  31. Gottschalk G: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. II. Verwertung organischer Säuren. Arch Mikrobiol 1964b;47:230–235.
  32. Gottschalk G: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. III. Synthese aus Kohlendioxyd. Arch Mikrobiol 1964c;47:236–250.
  33. Gottschalk G, Eberhardt U, Schlegel HG: Verwertung von Fructose durch Hydrogenomonas H16. Arch Mikrobiol 1964;48:95–108.
  34. Gottschalk G, Schlegel HG: Preparation of 14C-D(–)-β-hydroxybutyric acid from using ‘Knallgas’ bacteria (Hydrogenomonas). Nature 1965;205:308.
  35. Green PR, Kemper J, Schechtman L, Guo L, Satkowski M, Fiedler S, Steinbüchel A, Rehm BHA: Formation of short chain length/medium chain length polyhydroxyalkanoate copolymers by fatty acid β-oxidation inhibited Ralstonia eutropha. Biomacromolecules 2002;3:208–213.
  36. Hahn JJ, Eschenlauer AC, Sleytr UB, Somers DA, Srienc F: Peroxisomes as sites for synthesis of polyhydroxyalkanoates in transgenic plants. Biotechnol Prog 1999;15:1053–1057.
  37. Handrick R, Simone S, Jendrossek D: Mobilization of poly(3-hydroxybutyrate) in Ralstonia eutropha. J Bacteriol 2000;182:5916–5918.
  38. Hänisch J, Wältermann M, Robenek H, Steinbüchel A: The Ralstonia eutropha H16 phasin PhaP1 is targeted to intracellular triacylglycerol inclusions in Rhodococcus opacus PD630 and Mycobacterium smegmatis mc2155, and provides an anchor to target other proteins. Microbiology 2006;152:3271–3280.
  39. Haywood G, Anderson A, Chu L, Dawes E: Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 1988;52:91–96.
  40. Haywood G, Anderson A, Dawes E: The importance of PHB synthase substrate specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 1989;57:1–6.
  41. Hippe H: Wiederverwertung von Poly-β-hydroxybuttersäure durch Knallgasbakterien. Zentralbl Bakteriol (Orig) 1965;198:321–323.
  42. Hippe H: Abbau und Wiederverwertung von Poly-β-hydroxybuttersäure durch Hydrogenomonas H16. Arch Mikrobiol 1967;56:248–277.
  43. Hippe H, Schlegel HG: Hydrolyse von PHBS durch intracelluläre Depolymerase von Hydrogenomonas H16. Arch Mikrobiol 1967;56:278–299.
  44. Hocking PJ, Marchessault RH: Biopolyesters; in Griffin G (ed): Chemistry and Technology for Biodegradable Polymers. London, Chapman & Hall, 1994, pp 48–96.
  45. Hogrefe C, Friedrich B: Isolation and characterization of megaplasmid DNA from lithoautotrophic bacteria. Plasmid 1984;12:161–169.
  46. Holmes PA, Wright LF, Collins SH: β-Hydroxybutyrate polymers. Eur Pat Appl 1981; EP052.459.
  47. Hoppensack A, Rehm BHA, Steinbüchel A: Analysis of 4-phosphopantetheinylation of polyhydroxybutyrate synthase from Ralstonia eutropha: generation of β-alanine auxotrophic Tn5 mutants and cloning of panD gene region. J Bacteriol 1999;181:1429–1435.
  48. Houmiel K, Slater S, Broyles D, Casagrande L, Colburn S, Gonzalez K, Mitsky T, Reiser S, Shah D, Taylor N, et al: Poly(β-hydroxybutyrate) production in oilseed leukoplasts of Brassica napus. Planta 1999;209:547–550.
  49. Ibrahim M, Schlegel HG: Oxygen supply to bacterial suspensions of high cell densities by hydrogen peroxide. Biotechnol Bioeng 1980;22:1877–1894.
  50. Impallomeni G, Steinbüchel A, Lütke-Eversloh T, Barbuzzi T, Ballistreri A: Nuclear magnetic resonance and electrospray ionization mass spectrometry for characterization of microbial copolymers consisting of 3-hydroxybutyrate and 3-mercaptoalkanoic acids. Biomacromolecules 2007;8:985–991.
  51. Jendrossek D, Kratzin HD, Steinbüchel A: The Alcaligenes eutrophusldh structural gene encodes a novel type of lactate dehydrogenase. FEMS Microbiol Lett 1993;112:229–235.
  52. Jendrossek D, Steinbüchel A, Schlegel HG: Alcohol dehydrogenase gene from Alcaligenes eutrophus: subcloning, heterologous expression in Escherichia coli, sequencing, and location of Tn5 insertions. J Bacteriol 1988;170:5248–5256.
  53. Jo S, Maeda M, Ooi T, Taguchi S: Production system for biodegradable polyester polyhydroxybutyrate by Corynebacterium glutamicum. J Biosci Bioeng 2006;102:233–236.
  54. John M, Keller G: Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci USA 1996;93:12768–12773.
  55. Jurassek L, Marchessault RH: Polyhydroxyalkanoates (PHA) granule formation in Ralstonia eutropha cells: a computer simulation. Appl Microbiol Biotechnol 2004;64:611–617.
  56. Kalousek S, Lubitz W: High-level poly(β-hydroxybutyrate) production in recombinant Escherichia coli in sugar-free, complex medium. Can J Microbiol 1995;41:216–221.
  57. Kalscheuer R, Arenskötter M, Steinbüchel A: Establishment of a gene transfer system for Rhodococcus opacus PD630 based on electroporation and its application for recombinant biosynthesis of poly(3-hydroxyalkanoic acids). Appl Microbiol Biotechnol 1999; 52:508–515.
  58. Kaltwasser H, Schlegel HG: Demonstration and quantitative determination of polyphosphate in hydrogen oxidizing bacteria. Arch Mikrobiol 1959;34:76–92.
  59. Kihlberg R: The microbe as a source of food. Annu Rev Microbiol 1972;26:427–466.
  60. Kobayashi T, Shiraki M, Abe T, Sugiyama A, Saito T: Purification and properties of an intracellular 3-hydroxybutyrate-oligomer hydrolase (PhaZ2) in Ralstonia eutropha H16 and its identification as a novel intracellular poly(3-hydroxybutyrate) depolymerase. J Bacteriol 2003;185:3485–3490.
  61. Koop A, Voss I, Thesing A, Kohl H, Reichelt R, Steinbüchel A: Identification and localization of cyanophycin in bacteria cells via imaging of the nitrogen distribution using energy filtering transmission electron microscopy. Biomacromolecules 2007;8:2675–2683.
  62. Koosha F, Muller RH, Davis SS: Polyhydroxybutyrate as a drug carrier. Crit Rev Ther Drug Carrier Syst 1989;6:117–130.
  63. Kornberg A, Kornberg SR, Simms ES: Metaphosphate synthesis by an enzyme from Escherichia coli. Biochim Biophys Acta 1956;20:215–227.
  64. Kornberg A, Rao NN, Ault-Riche D: Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 1999;68:89–125.
  65. Krehenbrink M, Oppermann-Sanio FB, Steinbüchel A: Evaluation of non-cyanobacterial genome sequences for occurrence of cyanophycin synthetae homologous genes and cloning of an active cyanophycin synthetase from Acinetobacter sp. DSM 587. Arch Microbiol 2002;177:371–380.
  66. Kuchta K, Chi LF, Fuchs H, Pötter M, Steinbüchel A: Studies on the influence of phasins on accumulation and mobilization of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromolecules 2007;8:657–662.
  67. Kuhn M, Jendrossek D, Fründ C, Steinbüchel A, Schlegel HG: Cloning of the Alcaligenes eutrophus alcohol dehydrogenase gene. J Bacteriol 1988;170:685–692.
  68. Kunioka M, Nakamura Y, Doi Y: New bacterial copolyesters produced in Alcaligenes eutrophus from organic acids. Polym Commun 1988;29:174–176.
  69. Kuroda A, Kornberg A: Polyphosphate kinase as a nucleoside diphosphate kinase in Escherichia coli and Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1997;94:439–442.
  70. Kusano S, Ishihama A: Functional interaction of Escherichia coli RNA polymerase with inorganic polyphosphate. Genes Cells 1997;2:433–441.
  71. Leaf TA, Peterson MS, Stoup SK, Somers D, Srienc F: Saccharomyces cerevisiae expressing bacterial polyhydroxybutyrate synthase produces poly-3-hydroxybutyrate. Microbiology 1996;142:1169–1180.
  72. Lee S, Park S: Fermentative production of short-chain-length PHAs; in Steinbüchel A, Doi Y (eds): Biotechnology of Biopolymers – From Synthesis to Patents. Weinheim, Wiley-VCH, 2005, vol 1, pp 207–234.
  73. Lee SJ, Park JP, Park TJ, Lee SY, Lee S, Park JK: Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal Chem 2005;77:5755–5759.
  74. Lee SY, Choi JI: Production of microbial polyester by fermentation of recombinant microorganisms. Adv Biochem Eng Biotechnol 2001;71:183–207.
  75. Lemoigne M: Produits de deshydration et de polymérisation de lácide β-oxybutyrique. Bull Soc Chim Biol (Paris) 1926;8:770–782.
  76. Lemoigne M, Delaporte B, Croson M: Contribution a l’ étude botanique et biochemique des bactéries du genre Bacillus. 2. Valeur du test des lipides β-hydroxybutyriques pour la caracterisation des espéces. Ann Inst Pasteur Paris 1944;70:224–233.
  77. Lenz RW, Marchessault RH: Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005;6:1–8.
  78. Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A: Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). Biomacromolecules 2001a;2:1061–1065.
  79. Lütke-Eversloh T, Bergander K, Luftmann H, Steinbüchel A: Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. Microbiology 2001b;147:11–19.
  80. Lütke-Eversloh T, Fischer A, Remminghorst U, Kawada J, Marchessault RH, Bogershausen A, Kalwei M, Eckert H, Reichelt R, Liu S, et al: Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli. Nat Mater 2002a;1:236–240.
  81. Lütke-Eversloh T, Kawada J, Marchessault RH, Steinbüchel A: Characterization of microbial polythioesters: physical properties of novel copolymers synthesized by Ralstonia eutropha. Biomacromolecules 2002b;3:159– 166.
  82. Lütke-Eversloh T, Steinbüchel A: Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis in Ralstonia eutropha. FEMS Microbiol Lett 2003;221:191–196.
  83. Madison LL, Huisman GW: Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 1999;63:21–53.
  84. Makino K, Shinagawa H, Amemura M, Kawamoto T, Yamada M, Nakata A: Signal transduction in the phosphate regulon of Escherichia coli involves phosphotransfer between PhoR and PhoB proteins. J Mol Biol 1989;210:551–559.
  85. Matsusaki H, Abe H, Doi Y: Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp. 61-3. Biomacromolecules 2000;1:17–22.
  86. Mayer F, Hoppert M: Determination of the thickness of the boundary layer surrounding bacterial PHA inclusion bodies, and implication for models describing the molecular architecture of this layer. J Basic Microbiol 1997;37:45–52.

    External Resources

  87. McCarthy A: Metabolix, Inc. and Tepha, Inc. Bioplastics for industry and medical devices. Chem Biol 2003;10:893–894.
  88. Meier-Schneiders M, Weikmann W, Grosshans U, Busch C, Steinbüchel A: On-line analysis of Alcaligenes eutrophus fermentations. Can J Microbiol 1995;41:267–273.
  89. Menzel G, Harloff H, Jung C: Expression of bacterial poly(3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 2003; 60:571–576.
  90. Miyake M, Takase K, Narato M, Khatipov E, Schnackenberg J, Shirai M, Kurane R, Asada Y: Polyhydroxybutyrate production from carbon dioxide by cyanobacteria. Appl Biochem Biotechnol 2000;84–86:991–1002.
  91. Nakashita H, Arai Y, Yoshioka K, Fukui T, Doi Y, Usami R, Horikoshi K, Yamaguchi I: Production of biodegradable polyester by a transgenic tobacco. Biosci Biotechnol Biochem 1999;63:870–874.
  92. Nesmeyanova MA: Polyphosphates and enzymes of polyphosphate metabolism in Escherichia coli. Biochemistry (Mosc) 2000;65:309–314.
  93. Oeding V, Schlegel HG: Beta-ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem J 1973;134:239–248.
  94. Oppermann-Sanio FB, Steinbüchel A: Occurrence, functions and biosynthesis of polyamides in microorganisms and biotechnological production. Naturwissenschaften 2002;89:11–22.
  95. Ostle AG, Holt JG: Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl Environ Microbiol 1982;44:238–241.
  96. Park TJ, Park JP, Lee SJ, Hong HJ, Lee SY: Polyhydroxyalkanoate chip for the specific immobilization of recombinant proteins and its applications in immunodiagnostics. Biotechnol Bioproc Eng 2006;11:173–177.
  97. Peoples OP, Sinskey AJ: Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). J Biol Chem 1989;264:15298–15303.
  98. Peters V, Rehm BHA: In vivo monitoring of PHA granule formation using GFP-labeled PHA synthase. FEMS Microbiol Lett 2005;248:93–100.
  99. Peters V, Rehm BHA: In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase. Appl Environ Microbiol 2006;72:1777–1783.
  100. Pfitzner J, Schlegel HG: Denitrifikation bei Hydrogenomonas eutropha Stamm H 16. Arch Mikrobiol 1973;90:199–211.
  101. Pieper-Fürst U, Madkour MH, Mayer F, Steinbüchel A: Identification of the region of a 14-kilodalton protein of Rhodococcus ruber that is responsible for the binding of this phasin to polyhydroxyalkanoic acid granules. J Bacteriol 1995;177:2513–2523.
  102. Pohlmann A, Fricke W, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Pötter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbüchel A, Friedrich B, Bowien B: Genome sequence of the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Nat Biotechnol 2006;24:1257–1262.
  103. Poirier Y, Dennis D, Klomparens K, Somerville C: Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 1992;256:520–523.
  104. Pötter M, Madkour MH, Mayer F, Steinbüchel A: Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 2002;148:2413–2426.
  105. Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A: The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 2004;150:2301–2311.
  106. Pötter M, Steinbüchel A: Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 2005;6:552–560.
  107. Pötter M, Steinbüchel A: Biogenesis and structure of polyhydroxyalkanoate granules; in Steinbüchel A (ed): Inclusions in Prokaryotes. Microbiol Monogr. Heidelberg, Springer, 2006, pp 109–136.
  108. Preusting H, Kingma J, Huisman G, Steinbüchel A, Witholt B: Formation of polyester blends by a recombinant strain of Pseudomonas oleovorans: different poly(3-hydroxyalkanoates) are stored in separate granules. J Environ Polym Degrad 1993;1:45–53.

    External Resources

  109. Pries A, Hein S, Steinbüchel A: Identification of a lipoamide dehydrogenase gene as second locus affected in poly(3-hydroxyalkanoic acid)-leaky mutants of Alcaligenes eutrophus. FEMS Microbiol Lett 1992;97:227–234.
  110. Pries A, Priefert H, Krüger N, Steinbüchel A: Identification and characterization of two Alcaligenes eutrophus gene loci relevant to the phenotype poly(β-hydroxybutyric acid)-leaky which exhibit homology to ptsH and ptsI of Escherichia coli. J Bacteriol 1991;173:5843–5853.
  111. Pries A, Steinbüchel A, Schlegel H: Lactose and galactose utilizing strains of poly(hydroxyalkanoic acid) accumulating Alcaligenes eutrophus and Pseudomonas saccharophila obtained by recombinant DNA technology. Appl Microbiol Biotechnol 1990;33:410–417.
  112. Raberg M, Reinecke F, Reichelt R, Malkus U, König S, Pötter M, Fricke WF, Pohlmann A, Friedrich B, Bowien B, Steinbüchel A: Ralstonia eutropha H16 changes flagellation according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 2008 (in preparation).
  113. Rao NN, Kornberg A: Inorganic polyphosphate regulates responses of Escherichia coli to nutritional stringencies, environmental stresses and survival in the stationary phase. Prog Mol Subcell Biol 1999;23:183–195.
  114. Rehm BHA, Antonio RV, Spiekermann P, Amara AA, Steinbüchel A: Molecular characterization of the poly(3-hydroxybutyrate) (PHB) synthase from Ralstonia eutropha: in vitro evolution, site-specific mutagenesis and development of PHB synthase protein model. Biochim Biophys Acta Protein Struct Mol Eng 2002;1594:178–190.
  115. Rehm BHA, Krüger N, Steinbüchel A: A new metabolic link between fatty acid de novosynthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme A transferase. J Biol Chem 1998;273:24044–24051.
  116. Rehm BHA, Steinbüchel A: PHA synthases – the key enzymes of PHA synthesis; in Doi Y, Steinbüchel A (eds): Biopolymers, ed 1. Weinheim, Wiley-VCH, 2001, pp 173–215.
  117. Ruhr EM SH: Synthesis of poly-β-hydroxybutyrate in vivo and kinetics of β-ketothiolase in vitro in Alcaligenes eutrophus H16. Biochem Soc Trans 1975;3:1093–1096.
  118. Ruwaida A, Schlegel H: Removal of RNA by heat treatment. I. Elaboration of a standard procedure for Alcaligenes eutrophus H16. Eur J Appl Microbiol 1976;2:73–79.

    External Resources

  119. Saegusa H, Shiraki M, Kanai C, Saito T: Cloning of an intracellular poly[D(–)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. J Bacteriol 2001;183:94–100.
  120. Saegusa H, Shiraki M, Saito T: Cloning of an intracellular D(–)-3-hydroxybutyrate-oligomer hydrolase gene from Ralstonia eutropha H16 and identification of the active site serine residue by site-directed mutagenesis. J Biosci Bioeng 2002;94:106–112.
  121. Schindler J: Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Arch Mikrobiol 1964;49:236–255.
  122. Schindler J, Schlegel HG: D-(–)-Hydroxybuttersäure-Dehydrogenase aus Hydrogenomonas H16. Biochem Zt 1963;339:154–161.
  123. Schlegel HG: Die Verwendung von H2-oxidierenden Bakterien zur Regenerierung der Atemluft. Raketentech Raumfahrtforsch 1964;8:65–67.
  124. Schlegel HG: Growth of ‘Knallgas’ bacteria (Hydrogenomonas) using direct electrolysis of the culture medium. Nature 1965;205:308–309.
  125. Schlegel HG, Gottschalk G: Verwertung von Glucose durch eine Mutante von Hydrogenomonas H16. Biochem Z 1965;341:249–259.
  126. Schlegel HG, Gottschalk G, von Bartha R: Formation and utilization of poly-β-hydroxybutyric acid by Knallgas bacteria (Hydrogenomonas). Nature 1961a;191:463–465.
  127. Schlegel HG, Kaltwasser H, Gottschalk G: Ein Submersverfahren zur Kultur wasserstoff-oxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch Mikrobiol 1961b;38:209–222.
  128. Schlegel HG, Lafferty R: Submerskultur von Hydrogenomonas mit elektrolytischer Knallgaserzeugung im Kulturgefäss. Zentralbl Bakteriol 1964;118:483–490.
  129. Schlegel HG, Lafferty R: Novel energy and carbon sources. A. The production of biomass from hydrogen and carbon dioxide. Adv Biochem Eng 1971;1:143–168.
  130. Schlegel HG, Lafferty R, Krauss I: The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol 1970a;71:283–294.
  131. Schlegel HG, Lafferty R, Krauss I: Bacterial mutants of Hydrogenomonas lacking poly-β-hydroxybutyric acid. Experientia 1970b;26:554–555.
  132. Schlegel H, Schuster E, König C: Kontinuierliche Kultur von Knallgasbakterien mit elektrolytisch erzeugtem Knallgas. Zentralbl Bakteriol (Orig) 1967;2:73–78.
  133. Schlegel H, Steinbüchel A: Die Relative Respirationsrate (RRR), ein neuer Belüftungsparameter; in Lafferty RM (ed): Fermentation. Vienna, Springer, 1981, pp 10–26.
  134. Schlegel HG, Vollbrecht D: Formation of the dehydrogenases for lactate, ethanol and butanediol in the strictly aerobic bacterium Alcaligenes eutrophus. J Gen Microbiol 1980;117:475–481.
  135. Schubert P, Krüger N, Steinbüchel A: Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) (PHB) biosynthetic operon: identification of the N-terminus of PHB synthase and identification of the promotor. J Bacteriol 1991;173:168–175.
  136. Schubert P, Steinbüchel A, Schlegel HG: Cloning of the Alcaligenes eutrophus gene for synthesis of poly-β-hydroxybutyric acid and synthesis of PHB in Escherichia coli. J Bacteriol 1988;170:5837–5847.
  137. Schuster E, Schlegel HG: Chemolithotrophes Wachstum von Hydrogenomonas H16 im Chemostaten mit elektrolytischer Knallgaserzeugung. Arch Mikrobiol 1967;58:380–409.
  138. Schwartz E, Friedrich B: A physical map of the megaplasmid pHG1, one of three genomic replicons in Ralstonia eutropha H16. FEMS Microbiol Lett 2001;201:213–219.
  139. Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G: Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 2003;332:369–383.
  140. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ: Multiple β-ketothiolases mediate poly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 1998;180:1979–1987.
  141. Slater SC, Voige WH, Dennis DE: Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β-hydroxybutyrate biosynthetic pathway. J Bacteriol 1988;170:4431–4436.
  142. Spiekermann P, Rehm BHA, Kalscheuer R, Baumeister D, Steinbüchel A: A sensitive, viable colony-staining method using Nile Red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 1999;171:73–78.
  143. Steed PM, Wanner BL: Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol 1993;175:6797–6809.
  144. Steinbüchel A: Expression of the Escherichia colipfkA gene in Alcaligenes eutrophus and in other Gram-negative bacteria. J Bacteriol 1986;166:319–327.
  145. Steinbüchel A: Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 2001;1:1–24.
  146. Steinbüchel A, Aerts K, Babel W, Föllner C, Liebergesell M, Madkour MH, Mayer F, Pieper-Fürst U, Pries A, Valentin HE: Considerations on the structure and biochemistry of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol 1995;41:94–105.
  147. Steinbüchel A, Schlegel HG: NAD-linked L(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 1. Purification and properties. Eur J Biochem 1983a;130:321–328.
  148. Steinbüchel A, Schlegel HG: NAD-linked L(+)-lactate dehydrogenase from the strict aerobe Alcaligenes eutrophus. 2. Kinetic properties and inhibition by oxaloacetate. Eur J Biochem 1983b;130:329–334.
  149. Steinbüchel A, Schlegel HG: A multifunctional fermentative alcohol dehydrogenase from the strict aerobe Alcaligenes eutrophus: purification and properties. Eur J Biochem 1984;141:555–564.
  150. Steinbüchel A, Schlegel HG: Physiology and molecular genetics of poly(β-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 1991;5:535–542.
  151. Steinbüchel A, Valentin HE: Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol Lett 1995;128:219–228.
  152. Taguchi S, Doi Y: Evolution of polyhydroxyalkanoate (PHA) production system by ‘enzyme evolution’: successful case studies of directed evolution. Macromol Biosci 2004;4:146–156.
  153. Taguchi S, Maehara A, Takase K, Nakahara M, Nakamura H, Doi Y: Analysis of mutational effects of a polyhydroxybutyrate (PHB) polymerase on bacterial PHB accumulation using an in vivo assay system. FEMS Microbiol Lett 2001;198:65–71.
  154. Taguchi S, Nakamura H, Hiraishi T, Yamato I, Doi Y: In vitro evolution of a polyhydroxybutyrate synthase by intragenic suppression-type mutagenesis. J Biochem (Tokyo) 2002;131:801–806.
  155. Terentiev Y, Breuer U, Babel W, Kunze G: Non-conventional yeasts as producers of polyhydroxyalkanoates – genetic engineering of Arxula adeninivorans. Appl Microbiol Biotechnol 2004;64:376–381.
  156. Tessmer N, König S, Malkus U, Reichelt R, Pötter M, Steinbüchel A: Heat-shock protein HspA mimicking the function of phasins sensu stricto in recombinant strains of Escherichia coli accumulating polythioesters or polyhydroxyalkanoates. Microbiology 2007;153:366–374.
  157. Timm A, Byrom D, Steinbüchel A: Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl Microbiol Biotechnol 1990;33:296–301.
  158. Valentin HE, Lee EY, Choi CY, Steinbüchel A: Identification of 4-hydroxyhexanoic acid as a new constituent of biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 1994;40:710–716.
  159. Valentin HE, Schönebaum A, Steinbüchel A: Identification of 4-hydroxyvaleric acid as a constituent in biosynthetic polyhydroxyalkanoic acids from bacteria. Appl Microbiol Biotechnol 1992;36:507–514.
  160. Valentin HE, Steinbüchel A: Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid synthases. Appl Microbiol Biotechnol 1994;40:699–709.
  161. Valentin HE, Steinbüchel A: Accumulation of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid-co-4-hydroxyvaleric acid) by mutants and recombinant strains of Alcaligenes eutrophus. J Environ Polym Degrad 1995;3:169–175.
  162. Valentin HE, Zwingmann G, Schönebaum A, Steinbüchel A: Metabolic pathway for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate by Alcaligenes eutrophus. Eur J Biochem 1995;227:43–60.
  163. Vandamme P, Coenye T: Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 2004;54:2285–2289.
  164. Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraegen G: Wautersia gen. nov., a new genus accommodating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia[Pseudomonas]syzygii (Roberts et al. 1990) comb. nov. Int J Syst Evol Microbiol 2004;54:317–327.
  165. Vijayasankaran N, Carlson R, Srienc F: Synthesis of poly[(R)-3-hydroxybutyric acid] in the cytoplasm of Pichia pastoris under oxygen limitation. Biomacromolecules 2005;6:604–611.
  166. Vollbrecht D, Elnawawy M, Schlegel H: Excretion of metabolites by hydrogen bacteria. 1. Autotrophic and heterotrophic fermentations. Eur J Appl Microbiol 1978;6:145–155.
  167. Vollbrecht D, Schlegel HG: Excretion of metabolites by hydrogen bacteria. 2. Influences of aeration, pH, temperature, and age of cells. Eur J Appl Microbiol 1978;6:157–166.
  168. Vollbrecht D, Schlegel HG: Excretion of metabolites by hydrogen bacteria. 3. D(–)-3-Hydroxybutanoate. Eur J Appl Microbiol 1979;7:259–266.
  169. Vollbrecht D, Schlegel H, Stoschek G, Janczikowski A: Excretion of metabolites by hydrogen bacteria. 4. Respiration rate-dependent formation of primary metabolites and of poly-3-hydroxybutanoate. Eur J Appl Microbiol 1979;7:276.
  170. Voss I, Diniz SC, Aboulmagd E, Steinbüchel A: Identification of the Anabaena sp. strain PCC7120 cyanophycin synthetase as suitable enzyme for production of cyanophycin in Gram-negative bacteria like Pseudomonas putida and Ralstonia eutropha. Biomacromolecules 2004;5:1588–1595.
  171. Voss I, Steinbüchel A: Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutropha strain H16. Metab Eng 2006;8:66–78.
  172. Wältermann M, Steinbüchel A: Neutral lipid-bodies in prokaryotes: recent insights into structure, formation and relationships to eukaryotic lipid depots. J Bacteriol 2005;187:3607–3619.
  173. Walther-Mauruschat A, Aragno M, Mayer F, Schlegel HG: Micromorphology of Gram-negative hydrogen bacteria. II. Cell envelope, membranes, and cytoplasmic inclusions. Arch Microbiol 1977;114:101–110.
  174. Wieczorek R, Pries A, Steinbüchel A, Mayer F: Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 1995;177:2425–2435.
  175. Wieczorek R, Steinbüchel A, Schmidt B: Occurrence of polyhydroxyalkanoic acid granule-associated proteins related to the Alcaligenes eutrophus H16 GA24 protein in other bacteria. FEMS Microbiol Lett 1996;135:23–30.
  176. Wilde E: Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas eutropha. Arch Mikrobiol 1962;43:109–137.
  177. Williams D: The proving of polyhydroxybutyrate and its potential in medical technolo gy. Med Device Technol 2005;16:9–10.
  178. Williams MD, Fieno AM, Grant RA, Sherman DH: Expression and analysis of a bacterial poly(hydroxyalkanoate) synthase in insect cells using a baculovirus system. Protein Expr Purif 1996a;7:203–211.
  179. Williams MD, Rahn JA, Sherman DH: Production of a polyhydroxyalkanoate biopolymer in insect cells with a modified eucaryotic fatty acid synthase. Appl Environ Microbiol 1996b;62:2540–2546.
  180. Wodzinska J, Snell KD, Rhomberg A, Sinskey AJ, Biemann K, Stubbe J: Polyhydroxybutyrate synthase: evidence for covalent catalysis. J Am Chem Soc 1996;118:6319–6320.
  181. Wrobel M, Zebrowski J, Szopa J: Polyhydroxybutyrate synthesis in transgenic flax. J Biotechnol 2004;107:41–54.
  182. Yabuuchi E, Kosako Y, Yano I, Hotta H, Nishiuchi Y: Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. Microbiol Immunol 1995;39:897–904.
  183. York GM, Lupberger J, Tian J, Lawrence AG, Stubbe J, Sinskey AJ: Ralstonia eutropha H16 encodes two and possibly three intracellular poly[D-(–)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 2003;185:3788–3794.
  184. York GM, Stubbe J, Sinskey AJ: The Ralstonia eutropha PhaR protein couples synthesis of the PhaP phasin to the presence of polyhydroxybutyrate in cells and promotes polyhydroxybutyrate production. J Bacteriol 2002;184: 59–66.
  185. Yuan Z, Zaheer R, Finan TM: Regulation and properties of PstSCAB, a high-affinity, high-velocity phosphate transport system of Sinorhizobium meliloti. J Bacteriol 2006;188:1089–1102.
  186. Zeller M, Pötter M, Reinecke F, Steinbüchel A, Burkitt WI, Derrick PJ, König S: Mass spectrometry identifies homologues of phasin PhaP1 protein of Ralstonia eutropha on polyhydroxybutyrate granules. J Biomacromol Mass Spectrom 2005;1:75–84.
  187. Zhang J, Hao N, Chen G: Effect of expressing polyhydroxybutyrate synthesis genes (phbCAB) in Streptococcus zooepidemicus on production of lactic acid and hyaluronic acid. Appl Microbiol Biotechnol 2006;71:222–227.
  188. Zinn M, Witholt B, Egli T: Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 2001;53:5–21.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50