Table of Contents
To view the fulltext, log-in or choose pay-per-view options:
Get Access

Significance of Melatonin in Antioxidative Defense System: Reactions and Products

Tan D.-X.a · Manchester L.C.a · Reiter R.J.a · Qi W.-B.a · Karbownik M.b · Calvo J.R.a
aDepartment of Cellular and Structural Biology, The University of Texas Health Science Center, San Antonio, Tex., USA; bDepartment of Thyroidology, Institute of Endocrinology, Medical University, Lodz, Poland Biol Signals Recept 2000;9:137–159 (DOI:10.1159/000014635)

Abstract

Melatonin is a potent endogenous free radical scavenger, actions that are independent of its many receptor-mediated effects. In the last several years, hundreds of publications have confirmed that melatonin is a broad-spectrum antioxidant. Melatonin has been reported to scavenge hydrogen peroxide (H2O2), hydroxyl radical (HO·), nitric oxide (NO·), peroxynitrite anion (ONOO), hypochlorous acid (HOCl), singlet oxygen (1O2), superoxide anion (O2·) and peroxyl radical (LOO·), although the validity of its ability to scavenge O2· and LOO· is debatable. Regardless of the radicals scavenged, melatonin prevents oxidative damage at the level of cells, tissues, organs and organisms. The antioxidative mechanisms of melatonin seem different from classical antioxidants such as vitamin C, vitamin E and glutathione. As electron donors, classical antioxidants undergo redox cycling; thus, they have the potential to promote oxidation as well as prevent it. Melatonin, as an electron-rich molecule, may interact with free radicals via an additive reaction to form several stable end-products which are excreted in the urine. Melatonin does not undergo redox cycling and, thus, does not promote oxidation as shown under a variety of experimental conditions. From this point of view, melatonin can be considered a suicidal or terminal antioxidant which distinguishes it from the opportunistic antioxidants. Interestingly, the ability of melatonin to scavenge free radicals is not in a ratio of mole to mole. Indeed, one melatonin molecule scavenges two HO·. Also, its secondary and tertiary metabolites, for example, N1-acetyl-N2-formyl-5-methoxykynuramine, N-acetyl-5-methoxykynuramine and 6-hydroxymelatonin, which are believed to be generated when melatonin interacts with free radicals, are also regarded as effective free radical scavengers. The continuous free radical scavenging potential of the original molecule (melatonin) and its metabolites may be defined as a scavenging cascade reaction. Melatonin also synergizes with vitamin C, vitamin E and glutathione in the scavenging of free radicals. Melatonin has been detected in vegetables, fruits and a variety of herbs. In some plants, especially in flowers and seeds (the reproductive organs which are most vulnerable to oxidative insults), melatonin concentrations are several orders of magnitude higher than measured in the blood of vertebrates. Melatonin in plants not only provides an alternative exogenous source of melatonin for herbivores but also suggests that melatonin may be an important antioxidant in plants which protects them from a hostile environment that includes extreme heat, cold and pollution, all of which generate free radicals.

Copyright © 2000 S. Karger AG, Basel

 

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50