Table of Contents
To view the fulltext, log-in or choose pay-per-view options:
Get Access

Turning Loss Into Opportunity: The Key Deletion of an Escape Circuit in Decapod Crustaceans

Faulkes Z.
Department of Biology, The University of Texas-Pan American, Edinburg, Tex., USA Brain Behav Evol 2008;72:251–261 (DOI:10.1159/000171488)


Decapod crustacean escape responses are adaptive behaviors whose neural bases are well understood. The escape circuit is composed of giant neurons. Lateral giant interneurons (LGs) respond to posterior stimuli by generating a somersaulting tailflip; medial giant interneurons (MGs) respond to anterior stimuli with a backwards tailflip. Both sets of interneurons connect to giant fast flexor motor neurons (MoGs). Most features of the escape circuit are thought to result from strong selective pressure to respond to stimuli in the shortest possible time. Despite the apparent advantages of the escape circuit, it has been lost in multiple taxa independently. Some losses of the escape circuit may be rare cases of disaptation, where organisms are less well adapted than related species (i.e., those with the escape circuit). The losses of the escape circuit might be key deletions that promoted the radiation of decapod crustaceans by increasing selection pressure for species to evolve new anti-predator strategies and removing constraints against change.


Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

Pay-per-View Options
Direct payment This item at the regular price: USD 9.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 8.00