Table of Contents
To view the fulltext, log-in or choose pay-per-view options:
Get Access

Characterization of 11p14-p12 deletion in WAGR syndrome by array CGH for identifying genes contributing to mental retardation and autism

Xu S.a · Han J.C.b · Morales A.a · Menzie C.M.b · Williams K.c · Fan Y.-S.a
aDepartment of Pediatrics, University Miami, Miami, FL bProgram in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health Human Development, NIH, Bethesda, MD cInternational WAGR Syndrome Association, Manassas, VA (USA) Cytogenet Genome Res 122:181–187 (2008) (DOI:10.1159/000172086)

Abstract

WAGR (Wilms tumor, Aniridia, Genitourinary malformations and mental Retardation) syndrome is a rare genomic disorder caused by deletion of the 11p14-p12 chromosome region. The majority of WAGR patients have mental retardation and behavioral problems, and more than 20% of the patients also have features of autism. While the Wilms tumor/genitourinary anomalies and aniridia are caused by deletion of WT1 and PAX6 respectively, the genomic cause of mental retardation and autism in WAGR syndrome remains unknown. Using oligonucleotide arrays, we have characterized the 11p14-p12 deletions in 31 patients and identified all the genes involved in each deletion. The deletions had sizes ranging from 4.9 to 23 Mb that encompass 18–62 genes (40 on average). In addition to WT1 and PAX6, all the patients had deletion of PRRG4 (transmembrane gamma-carboxyglutamic acid protein 4). The majority of them had deletion of BDNF (brain-derived neurotrophic factor) and SLC1A2 [solute carrier family 1 (glial high affinity glutamate transporter) member 2]. Deletion of BDNF and SLC1A2 occurred in patients with autism more frequently than in those without autism. Literature review on the functions of the genes suggests that haploinsufficiency of SLC1A2, PRRG4, and BDNF may contribute to mental retardation and behavioral problems. In particular, BDNF may modulate the risk of autism in WAGR patients as suggested by its link with Rett syndrome as a target of MECP2. We observed that all the de novo deletions occurred in the chromosome 11 inherited from the father in the families genotyped, implying a predisposition for de novo mutations occurring in spermatogenesis and possible involvement of imprinting in cognitive impairment in WAGR patients.

 

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50