Journal Mobile Options
Table of Contents
Vol. 16, No. 2, 2009
Issue release date: February 2009

Neuropsychiatric Disease and Toxoplasma gondii Infection

Henriquez S.A. · Brett R. · Alexander J. · Pratt J. · Roberts C.W.
To view the fulltext, log in and/or choose pay-per-view option

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Toxoplasma gondii infects approximately 30% of the world’s population, but causes overt clinical symptoms in only a small proportion of people. In recent years, the ability of the parasite to manipulate the behaviour of infected mice and rats and alter personality attributes of humans has been reported. Furthermore, a number of studies have now suggested T. gondii infection as a risk factor for the development of schizophrenia and depression in humans. As T. gondii forms cysts that are located in various anatomical sites including the brain during a chronic infection, it is well placed anatomically to mediate these effects directly. The T. gondii genome is known to contain 2 aromatic amino acid hydroxylases that potentially could directly affect dopamine and/or serotonin biosynthesis. However, stimulation of the immune response has also recently been associated with mood and behavioural alterations in humans, and compounds designed to alter mood, such as fluoxetine, have been demonstrated to alter aspects of immune function. Herein, the evidence for T.-gondii-induced behavioural changes relevant to schizophrenia and depression is reviewed. Potential mechanisms responsible for these changes in behaviour including the role of tryptophan metabolism and the hypothalamic-pituitary-adrenal axis are discussed.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Nicolle C, Manceaux L: Sur une infection à corps de Leishman (ou organismes voisins) du gondi. C R Acad Sci (Paris) 1908;147:763–766.
  2. Splendore A: Un nuovo protozoa parassita dei conigli incontrato nelle lesioni anatomiche d’una malattia che ricorda in molti punti il kalazar dell’uomo. Nota preliminario pel. Rev Soc Ciencias Sao Paulo 1908;3:109–112.
  3. Weinman D, Chandler AH: Toxoplasmosis in swine and rodents: reciprocal oral infections and potential human hazard. Proc Soc Exp Biol 1954;87:449–457.
  4. Jacobs L, Remington JS, Melton M: A survey of meat samples from swine, cattle, and sheep for the presence of encysted Toxoplasma. J Parasitol 1960;46:23–28.
  5. Hutchison WM, Dunachie JF, Siim JC, Work K: Life cycle of Toxoplasma gondii. Br Med J 1969;4:806.
  6. Frenkel JK, Dubey JP, Miller NL: Toxoplasma gondii in cats: fecal stages identified as coccidian oocysts. Science 1970;167:893–896.
  7. Janku J: Pathogenesis and pathologic anatomy of coloboma of macula lutea in eye of normal dimensions and in microphthalmic eye with parasites in retina. Casopsis Lekaru Ceskych 1923;62:1021–1027.
  8. Wolf A, Cowen D: Granulomatous encephalitomyelitis due to Encephalitozoon (encephalitozoic encephalitomylelitis): new protozoan disease of man. Bull Neurol Inst New York 1937;6:306–371.
  9. Wolf A, Cowen D, Paige D: Human toxoplasmosis: occurrence in infants as encephalitomyelitis. Verification by transmission to animals. Science 1939;89:226–227.
  10. Lyons RE, McLeod R, Roberts CW: Toxoplasmagondii tachyzoite-bradyzoite interconversion. Trends Parasitol 2002;18:198–201.
  11. Jones LA, Alexander J, Roberts CW: Ocular toxoplasmosis: in the storm of the eye. Parasite Immunol 2006;28:635–642.
  12. Hinze-Selch D, Däubener W, Eggert L, Erdag S, Stoltenberg R, Wilms S: A controlled prospective study of Toxoplasmagondii infection in individuals with schizophrenia: beyond seroprevalence. Schizophr Bull 2007;33:782–788.
  13. Torrey EF, Bartko JJ, Lun ZR, Yolken RH: Antibodies to Toxoplasmagondii in patients with schizophrenia: a meta-analysis. Schizophr Bull 2007;33:729–736.
  14. Brown AS: Prenatal infection as a risk factor for schizophrenia. Schizophr Bull 2006;32:200–202.
  15. Wang HL, Wang GH, Li QY, Shu C, Jiang MS, Guo Y: Prevalence of Toxoplasma infection in first-episode schizophrenia and comparison between Toxoplasma-seropositive and Toxoplasma-seronegative schizophrenia. Acta Psychiatr Scand 2006;114:40–48.
  16. Mortensen PB, Nørgaard-Pedersen B, Waltoft BL, Sørensen TL, Hougaard D, Yolken RH: Early infections of Toxoplasmagondii and the later development of schizophrenia. Schizophr Bull 2007;33:741–744.
  17. Innes EA: Toxoplasmosis: comparative species susceptibility and host immune response. Comp Immunol Microbiol Infect Dis 1997;20:131–138.
  18. Alexander J, Scharton-Kersten TM, Yap G, Roberts CW, Liew FY, Sher A: Mechanisms of innate resistance to Toxoplasmagondii infection. Philos Trans R Soc Lond B Biol Sci 1997;352:1355–1359.
  19. Yap GS, Shaw MH, Ling Y, Sher A: Genetic analysis of host resistance to intracellular pathogens: lessons from studies of Toxoplasmagondii infection. Microbes Infect 2006;8:1174–1178.
  20. Debierre-Grockiego F, Campos MA, Azzouz N, Schmidt J, Bieker U, Resende MG, Mansur DS, Weingart R, Schmidt RR, Golenbock DT, Gazzinelli RT, Schwarz RT: Activation of TLR2 and TLR4 by glycosylphosphatidylinositols derived from Toxoplasmagondii. J Immunol 2007;179:1129–1137.
  21. Mun HS, Aosai F, Norose K, Piao LX, Fang H, Akira S, Yano A: Toll-like receptor 4 mediates tolerance in macrophages stimulated with Toxoplasmagondii-derived heat shock protein 70. Infect Immun 2005;73:4634–4642.
  22. Aosai F, Rodriguez Pena MS, Mun HS, Fang H, Mitsunaga T, Norose K, Kang HK, Bae YS, Yano A: Toxoplasmagondii-derived heat shock protein 70 stimulates maturation of murine bone marrow-derived dendritic cells via Toll-like receptor 4. Cell Stress Chaperones 2006;11:13–22.
  23. Lauw FN, Caffrey DR, Golenbock DT: Of mice and man: TLR11 (finally) finds profilin. Trends Immunol 2005;26:509–511.
  24. Aliberti J, Valenzuela JG, Carruthers VB, Hieny S, Andersen J, Charest H, Reise Sousa C, Fairlamb A, Ribeiro JM, Sher A: Molecular mimicry of a CCR5 binding-domain in the microbial activation of dendritic cells. Nat Immunol 2003;4:485–490.
  25. Parker SJ, Roberts CW, Alexander J: CD8+ T cells are the major lymphocyte subpopulation involved in the protective immune response to Toxoplasma gondii in mice. Clin Exp Immunol 1991;84:207–212.
  26. Johnson JJ, Roberts CW, Pope C, Roberts F, Kirisits MJ, Estes R, Mui E, Krieger T, Brown CR, Forman J, McLeod R: In vitro correlates of Ld-restricted resistance to toxoplasmic encephalitis and their critical dependence on parasite strain. J Immunol 2002;169:966–973.
  27. Combe CL, Curiel TJ, Moretto MM, Khan IA: NK cells help to induce CD8(+)-T-cell immunity against Toxoplasmagondii in the absence of CD4(+) T cells. Infect Immun 2005;73:4913–4921.
  28. Blackwell JM, Roberts CW, Alexander J: Influence of genes within the MHC on mortality and brain cyst development in mice infected with Toxoplasmagondii: kinetics of immune regulation in BALB H-2 congenic mice. Parasite Immunol 1993;15:317–324.
  29. Brown CR, McLeod R: Class I MHC genes and CD8+ T cells determine cyst number in Toxoplasmagondii infection. J Immunol 1990;145:3438–3441.
  30. Gazzinelli RT, Oswald IP, James SL, Sher A: IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J Immunol 1992;148:1792–1796.
  31. Gazzinelli RT, Wysocka M, Hieny S, Scharton-Kersten T, Cheever A, Kühn R, Müller W, Trinchieri G, Sher A: In the absence of endogenous IL-10, mice acutely infected with Toxoplasmagondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-gamma and TNF-alpha. J Immunol 1996;157:798–805.
  32. Nickdel MB, Lyons RE, Roberts F, Brombacher F, Hunter CA, Alexander J, Roberts CW: Intestinal pathology during acute toxoplasmosis is IL-4 dependent and unrelated to parasite burden. Parasite Immunol 2004;26:75–82.
  33. Nickdel MB, Roberts F, Brombacher F, Alexander J, Roberts CW: Counter-protective role for interleukin-5 during acute Toxoplasma gondii infection. Infect Immun 2001;69:1044–1052.
  34. Villard O, Candolfi E, Despringre JL, Derouin F, Marcellin L, Viville S, Kien T: Protective effect of low doses of an anti-IL-4 monoclonal antibody in a murine model of acute toxoplasmosis. Parasite Immunol 1995;17:233–236.
  35. Roberts CW, Ferguson DJ, Jebbari H, Satoskar A, Bluethmann H, Alexander J: Different roles for interleukin-4 during the course of Toxoplasmagondii infection. Infect Immun 1996;64:897–904.
  36. Suzuki Y, Yang Q, Yang S, Nguyen N, Lim S, Liesenfeld O, Kojima T, Remington JS: IL-4 is protective against development of toxoplasmic encephalitis. J Immunol 1996;157:2564–2569.
  37. Alexander J, Jebbari H, Bluethmann H, Brombacher F, Roberts CW: The role of IL-4 in adult acquired and congenital toxoplasmosis. Int J Parasitol 1998;28:113–120.
  38. Hunter CA, Roberts CW, Alexander J: Kinetics of cytokine mRNA production in the brains of mice with progressive toxoplasmic encephalitis. Eur J Immunol 1992;22:2317–2322.
  39. Hunter CA, Roberts CW, Murray M, Alexander J: Detection of cytokine mRNA in the brains of mice with toxoplasmic encephalitis. Parasite Immunol 1992;14:405–413.
  40. Burke JM, Roberts CW, Hunter CA, Murray M, Alexander J: Temporal differences in the expression of mRNA for IL-10 and IFN-gamma in the brains and spleens of C57BL/10 mice infected with Toxoplasmagondii. Parasite Immunol 1994;16:305–314.
  41. Schlüter D, Kaefer N, Hof H, Wiestler OD, Deckert-Schlüter M: Expression pattern and cellular origin of cytokines in the normal and Toxoplasmagondii-infected murine brain. Am J Pathol 1997;150:1021–1035.

    External Resources

  42. Schlüter D, Kwok LY, Lütjen S, Soltek S, Hoffmann S, Körner H, Deckert M: Both lymphotoxin-alpha and TNF are crucial for control of Toxoplasmagondii in the central nervous system. J Immunol 2003;170:6172–6182.
  43. Wilson EH, Wille-Reece U, Dzierszinski F, Hunter CA: A critical role for IL-10 in limiting inflammation during toxoplasmic encephalitis. J Neuroimmunol 2005;165:63–74.
  44. Li Y, Chu N, Hu A, Gran B, Rostami A, Zhang GX: Inducible IL-23p19 expression in human microglia via p38 MAPK and NF-kappaB signal pathways. Exp Mol Pathol 2008;84:1–8.
  45. Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H, Suzumura A: Production and functions of IL-17 in microglia. J Neuroimmunol 2008;194:54–61.
  46. Dunn AJ: Effects of cytokines and infections on brain neurochemistry. Clin Neurosci Res 2006;6:52–68.
  47. Müller N, Schwarz MJ: The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. J Neural Transm 2007;(suppl 72):269–280.

    External Resources

  48. Müller N, Schwarz MJ: The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007;12:988–1000.
  49. Flegr J: Effects of toxoplasma on human behavior. Schizophr Bull 2007;33:757–760.
  50. Flegr J, Preiss M, Klose J, Havlícek J, Vitáková M, Kodym P: Decreased level of psychobiological factor novelty seeking and lower intelligence in men latently infected with the protozoan parasite Toxoplasma gondii dopamine, a missing link between schizophrenia and toxoplasmosis? Biol Psychol 2003;63:253–268.
  51. Skallová A, Novotná M, Kolbeková P, Gasová Z, Veselý V, Sechovská M, Flegr J: Decreased level of novelty seeking in blood donors infected with Toxoplasma. Neuro Endocrinol Lett 2005;26:480–486.

    External Resources

  52. Hodková H, Kolbeková P, Skallová A, Lindová J, Flegr J: Higher perceived dominance in Toxoplasma infected men – A new evidence for role of increased level of testosterone in toxoplasmosis-associated changes in human behavior. Neuro Endocrinol Lett 2007;28:110–114.

    External Resources

  53. Novotná M, Hanusova J, Klose J, Preiss M, Havlicek J, Roubalová K, Flegr J: Probable neuroimmunological link between Toxoplasma and cytomegalovirus infections and personality changes in the human host. BMC Infect Dis 2005;5:54.
  54. Flegr J, Havlícek J, Kodym P, Malý M, Smahel Z: Increased risk of traffic accidents in subjects with latent toxoplasmosis: a retrospective case-control study. BMC Infect Dis 2002;2:11.
  55. Yereli K, Balcioğlu IC, Ozbilgin A: Is Toxoplasmagondii a potential risk for traffic accidents in Turkey? Forensic Sci Int 2006;163:34–37.
  56. Delgado García G, Rodríguez Perdomo E: Reactivity of toxoplasmin intradermal test in neurotic and manic[-]depressive patients.Rev Cubana Med Trop 1980;32:35–39.
  57. Kar N, Misra B: Toxoplasma seropositivity and depression: a case report. BMC Psychiatry 2004;4:1.
  58. Hill DE, Chirukandoth S, Dubey JP: Biology and epidemiology of Toxoplasma gondii in man and animals. Anim Health Res Rev 2005;6:41–61.
  59. Berdoy M, Webster JP, Macdonald DW: Parasite-altered behaviour: is the effect of Toxoplasma gondii on Rattus norvergicus specific? Parasitology 1995;111:403–409.
  60. Berdoy M, Webster JP, Macdonald DW: Fatal attraction in Toxoplasma-infected rats: a case of parasite manipulation of its mammalian host. Proc Biol Sci 2000;267:1591–1594.
  61. Webster JP: Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect 2001;3:1037–1045.
  62. Hay J, Hutchinson WM, Aitken PP, Graham DI: The effect of congenital and adult-acquired Toxoplasma infections on activity and responsiveness to novel stimulation on mice. Ann Trop Med Parasitol 1983;77:483–495.
  63. Hay J, Aitken PP, Hair DM, Hutchinson WM, Graham DI: The effect of congenital Toxoplasma infection on mouse activity and relative preference for exposed areas over a series of trials. Ann Trop Med Parasitol 1984;78:611–618.
  64. Hutchison WM, Aitken PP, Wells WP: Chronic Toxoplasma infections and familiarity-novelty discrimination in the mouse. Ann Trop Med Parasitol 1980;74:145–150.
  65. Hutchison WM, Aitken PP, Wells BW: Chronic Toxoplasma infections and motor performance in the mouse. Ann Trop Med Parasitol 1980;74:507–510.
  66. Hay J, Aitken PP, Graham DI: Toxoplasma infection and response to novelty in mice. Z Parasitenkd 1984;70:575–588.
  67. Webster JP, Brunton CF, Macdonald DW: Effect of Toxoplasma gondii on neophobic behaviour in wild brown rats, Rattus norvegicus. Parasitology 1994;109:37–43.
  68. Webster JP, Sequira-Gowtage S, Berdoy M, Hurd H: Predation of beetles (Tenebrio molitor) infected with tape-worms (Hymenolepis diminuta): a note of caution for the manipulation hypothesis. Parasitology 1994;121:313–319.
  69. Webster JP: The effect of Toxoplasma gondii and other parasites on activity levels in wild and hybrid Rattus norvegicus. Parasitology 1994;109:583–589.
  70. Vyas A, Kim SK, Giacomini N, Boothroyd JC, Sapolsky RM: Behavioral changes induced by Toxoplasma infection of rodents are highly specific to aversion of cat odors. Proc Natl Acad Sci USA 2007;104:6442–6447.
  71. Jones-Brando L, Torrey EF, Yolken R: Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr Res 2003;62:237–244.
  72. Webster JP, Lamberton PH, Donnelly CA, Torrey EF: Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii’s ability to alter host behaviour. Proc Biol Sci 2006;273:1023–1030.
  73. Ferguson DJ, Hutchison WM: The host-parasite relationship of Toxoplasma gondii in the brains of chronically infected mice. Virchows Arch A Pathol Anat Histopathol 1987;411:39–43.
  74. Stibbs HH: Changes in brain concentrations of catecholamines and indoleamines in Toxoplasma gondii infected mice. Ann Trop Med Parasitol 1985;79:153–157.
  75. Konsman JP, Parnet P, Dantzer R: Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci 2002;25:154–159.
  76. Wieczorek M, Swiergiel AH, Pournajafi-Nazarloo H, Dunn AJ: Physiological and behavioral responses to interleukin-1beta and LPS in vagotomized mice. Physiol Behav 2005;85:500–511.
  77. Tilders FJ, DeRijk RH, Van Dam AM, Vincent VA, Schotanus K, Persoons JH: Activation of the hypothalamus-pituitary-adrenal axis by bacterial endotoxins: routes and intermediate signals. Psychoneuroendocrinology 1994;19:209–232.
  78. Müller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Möller HJ, Arolt V, Riedel M: The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry 2006;11:680–684.
  79. Turnbull AV, Rivier C: Regulation of the HPA axis by cytokines. Brain Behav Immun 1995;9:253–275.
  80. Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008;13:453–461.
  81. Belvisi MG: Regulation of inflammatory cell function by corticosteroids. Proc Am Thorac Soc 2004;1:207–214.
  82. Gallagher P, Malik N, Newham J, Young AH, Ferrier IN, Mackin P: Antiglucocorticoid treatments for mood disorders. Cochrane Database Syst Rev 2008;1:CD005168.
  83. Türck J, Oberdörfer C, Vogel T, Mackenzie CR, Däubener W: Enhancement of antimicrobial effects by glucocorticoids. Med Microbiol Immunol 2005;194:47–53.
  84. Comings DE, Muhleman D, Dietz G, Sherman M, Forest GL: Sequence of human tryptophan 2,3-dioxygenase (TDO2): presence of a glucocorticoid response-like element composed of a GTT repeat and an intronic CCCCT repeat. Genomics 1995;29:390–396.
  85. Ruddick JP, Evans AK, Nutt DJ, Lightman SL, Rook GA, Lowry CA: Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 2006;8:1–27.
  86. Roberts CW, Roberts F, Lyons RE, Kirisits MJ, Mui EJ, Finnerty J, Johnson JJ, Ferguson DJ, Coggins JR, Krell T, Coombs GH, Milhous WK, Kyle DE, Tzipori S, Barnwell J, Dame JB, Carlton J, McLeod R: The shikimate pathway and its branches in apicomplexan parasites. J Infect Dis 2002;185(suppl 1):S25–S36.
  87. Pfefferkorn ER: Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc Natl Acad Sci USA 1984;81:908–912.
  88. Mellor AL, Munn DH: Tryptophan catabolism prevents maternal T cells from activating lethal anti-fetal immune responses. J Reprod Immunol 2001;52:5–13.
  89. Schröcksnadel K, Wirleitner B, Winkler C, Fuchs D: Monitoring tryptophan metabolism in chronic immune activation. Clin Chim Acta 2006;364:82–90.
  90. Müller N, Schwarz MJ: Immunologische Aspekte bei schizophrenen Störungen. Nervenarzt 2007;78:253–263.
  91. O’Connor JC, Lawson MA, André C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R: Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry DOI:10.1038/sj.mp.4002148.
  92. Stone TW: Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev 1993;45:309–379.
  93. Chiarugi A, Meli E, Moroni F: Similarities and differences in the neuronal death processes activated by 3OH-kynurenine and quinolinic acid. J Neurochem2001;77:1310–1318.
  94. Niwa T, Yoshizumi H, Emoto Y, Miyazaki T, Hashimoto N, Takeda N, Tatematsu A, Maed K: Accumulation of quinolinic acid in uremic serum and its removal by hemodialysis. Clin Chem 1991;37:159–161.
  95. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, Keefe RS, Davis SM, Davis CE, Lebowitz BD, Severe J, Hsiao JK, Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators: Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005;353:1209–1223.
  96. Caspi A, Moffitt TE: Gene-environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci 2006;7:583–590.
  97. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D’Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB: Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 1996;93:9235–9240.
  98. Snyder SH: Dopamine receptor excess and mouse madness. Neuron 2006;49:484–485.
  99. Coyle JT: Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell Mol Neurobiol 2006;26:365–384.
  100. Morris BJ, Cochran SM, Pratt JA: PCP: from pharmacology to modelling schizophrenia. Curr Opin Pharmacol 2005;5:101–106.
  101. Pratt JA, Winchester C, Egerton A, Cochran SM, Morris BJ: Modelling prefrontal cortex deficits in schizophrenia: implications for treatment. Br J Pharmacol 2008;153(suppl 1):S465–S470.
  102. Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD: Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 2007;13:1102–1107.
  103. Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N, Ozaki N, Taguchi T, Tatsumi M, Kamijima K, Straub RE, Weinberger DR, Kunugi H, Hashimoto R:Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004;13:2699–2708.
  104. Harrison PJ, Weinberger DR: Schizophrenia genes, gene expression and neuropathology: on the matter of their convergence. Mol Psychiatry2005;10:40–60.
  105. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K: Neuroregulin-1 and susceptibility to schizophrenia. Am J Hum Genet 2002;71:877–892.
  106. Hennah W, Thomson P, Peltonen L, Porteous D: Genes and schizophrenia: beyond schizophrenia: the role of Disc 1 in major mental illness. Schizophr Bull 2006;32:409–416.
  107. Porteous DJ, Thomson P, Brandon NJ, Millar JK: The genetics and biology of DISC1 – An emerging role in psychosis and cognition. Biol Psychiatry 2006;60:123–131.
  108. Cannon M, Jones PB, Murray RM: Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 2002;159:1080–1092.
  109. Yolken RH, Karlsson H, Yee F, Johnston-Wilson NL, Torrey EF: Endogenous retroviruses and schizophrenia. Brain Res Rev 2000;31:193–199.
  110. Brown AS, Susser ES: In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev2002;8:51–57.
  111. Patterson PH: Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 2002;12:115–118.
  112. Gilmore JH, Jarskog LF: Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res 1997;24:365–367.
  113. Meyer U, Feldon J, Yee BK: A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull DOI:10.1093/schbul/sbn022.
  114. Sorenson SB, Rutter CM, Aneshensel CS: Depression in the community: an investigation into age of onset. J Consult Clin Psychol 1991;59:541–546.
  115. Rush AJ: The varied clinical presentations of major depressive disorder. J Clin Psychiatry 2007;68(suppl 8):4–10.

    External Resources

  116. Anisman H, Merali Z: Anhedonic and anxiogenic effects of cytokine exposure. Adv Exp Med Biol 1999;461:199–233.
  117. Anisman H, Merali Z: Cytokines, stress and depressive illness: brain-immune interactions. Ann Med 2003;35:2–11.
  118. McEwen BS: Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology 2000;22:108–124.
  119. Ladd CO, Huot RL, Thrivkraman KV, Nemeroff CB, Meany MJ, Plotsky PM: Long-term behavioural and neuroendocrine adaptations to adverse early experience. Prog Brain Res 2000;122:81–103.
  120. Maletic V, Robinson M, Oakes T, Iyengar S, Ball SG, Russell J: Neurobiology of depression: an integrated view of key findings. Int J Clin Pract 2007;61:2030–2040.
  121. Castrén E: Is mood chemistry? Nat Rev Neurosci 2005;6:241–246.
  122. Devrets WC: Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 1998;49:341–361.
  123. Davidson RJ: Affective neuroscience and psychophysiology: toward a synthesis. Psychophysiology 2003;40:655–665.
  124. Swanson LW: The hypothalamus; in Björkland A, Hökfelt T, Swanson LW (eds): Handbook of Chemical Neuroanatomy. New York, Elsevier, 1987, vol 5: Integrated systems of the CNS. Part I: Hypothalamus, hippocampus, amygdala, retina, pp 1–124.
  125. Bush G, Luu P, Posner MI: Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000;4:215–222.
  126. McCormick LM, Ziebell S, Nopoulos P, et al: Anterior cingulate cortex: an MRI-based parcellation method. Neuroimage 2006;32:1167–1175.
  127. Viedebech P, Ravnkilde B: Hippocampal volume and depression: a meta-analysis of MRI studies. Am J Psychiatry 2004;161:1957–1966.
  128. Sheline YI, Gado MH, Kraemer HC: Untreated depression and hippocampal volume loss. Am J Psychiatry 2003;160:1516–1518.
  129. Colla M, Kronenberg G, Deuschle M, Meichel K, Hagen T, Bohrer M, Heuser I: Hippocampal volume reduction and HPA-system activity in major depression. J Psychiatr Res 2007;41:553–560.
  130. Neumeister A, Wood S, Bonne O, Nugent AC, Luckenbaugh DA, Young T, Bain EE, Charney DS, Drevets WC: Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biol Psychiatry 2005;57:935–937.
  131. Frodl T, Meisenzahl EM, Zetzsche T, Höhne T, Banac S, Schorr C, Jäger M, Leinsinger G, Bottlender R, Reiser M, Möller HJ: Hippocampal and amygdala changes in patients with major depressive disorder and healthy controls during a 1-year follow-up. J Clin Psychiatry 2004;65:492–499.
  132. Manji HK, Quiroz JA, Sporn J,Payne JL, Denicoff K, A Gray N, Zarate CA Jr, Charney DS:Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003;53:707–742.
  133. Raison CL, Miller AH: When not enough is too much: the role of insufficient glucocorticoid signalling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003;160:1554–1565.
  134. Weisler-Frank J, Maiser SF, Watkins LR: Immune-to-brain communication dynamically modulates pain: physiological and pathological consequences. Brain Behav Immun 2005;19:104–111.
  135. Kim YK, Suh IB, Kim H, Han CS, Lim CS, Choi SH, Licinio J: The plasma levels of interleukin-12 in schizophrenia, major depression, and bipolar mania: effects of psychotropic drugs. Mol Psychiatry 2002;7:1107–1114.
  136. Frommberger UH, Bauer J, Haselbauer P, Fräulin A, Riemann D, Berger M: Interleukin-6-(IL-6) plasma levels in depression and schizophrenia: comparison between the acute state and after remission. Eur Arch Psychiatry Clin Neurosci 1997;247:228–233.
  137. Mikova O, Yakimova R, Bosmans E, Kenis G, Maes M: Increased serum tumor necrosis factor alpha concentrations in major depression and multiple sclerosis. Eur Neuropsychopharmacol 2001;11:203–208.
  138. Tsigos C, Chrousos GP: Hypothalamic-pituitary-adrenal axis, neuroendocrine factors, and stress. J Psychosom Res 2002;53:865–871.
  139. Licinio J, Wong ML: The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stress-responsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999;4:317–327.
  140. Rajkowska G, Miguel-Hidalgo JJ: Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 2007;6:219–233.
  141. Tapia-Arancibia L, Rage F, Givalois L, Arancibia S: Physiology of BDNF: focus on hypothalamic function. Front Neuroendocrinol 2004;25:77–107.
  142. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM: Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 2002;109:143–148.
  143. Heninger GR, Delgado PL, Charney DS: The revised monoamine theory of depression: a modulatory role for monoamines, based on new findings from monoamine depletion experiments in humans. Pharmacopsychiatry 1996;29:2–11.
  144. Fields HL, Heinricher MM, Mason P: Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 1991;14:219–245.
  145. Baldwin DS: Unmet needs in the pharmacological management of depression. Hum Psychopharmacol 2001;16:S93–S99.
  146. Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G: The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 2003;23:7311–7316.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50