Journal Mobile Options
Table of Contents
Vol. 31, No. 1-2, 2009
Issue release date: April 2009
Section title: Review
Free Access
Dev Neurosci 2009;31:7–22
(DOI:10.1159/000207490)

Drugs, Biogenic Amine Targets and the Developing Brain

Frederick A.L.a · Stanwood G.D.b, c
aNeuroscience Graduate Program, bDepartment of Pharmacology, and cVanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tenn., USA
email Corresponding Author

Abstract

Defects in the development of the brain have a profound impact on mature brain functions and underlying psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetylcholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by abuse of a variety of illicit drugs, neurotherapeutics and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life.

© 2009 S. Karger AG, Basel


  

Key Words

  • Dopamine
  • Serotonin
  • Norepinephrine
  • Cocaine
  • Amphetamine
  • Prenatal cocaine
  • Postnatal development
  • Developmental neurotoxicity
  • Cognitive development

References

  1. Abreu-Villaca Y, Seidler FJ, Tate CA, Slotkin TA (2003): Nicotine is a neurotoxin in the adolescent brain: critical periods, patterns of exposure, regional selectivity, and dose thresholds for macromolecular alterations. Brain Res 979:114–128.
  2. Albert PR, Lemonde S (2004): 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist 10:575–593.
  3. Aldridge JE, Meyer A, Seidler FJ, Slotkin TA (2005): Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions. Toxicol Appl Pharmacol 203:132–144.
  4. Alm H, Kultima K, Scholz B, Nilsson A, Andren PE, Fex-Svenningsen A, Dencker L, Stigson M (2008): Exposure to brominated flame retardant PBDE-99 affects cytoskeletal protein expression in the neonatal mouse cerebral cortex. Neurotoxicology 29:628–637.
  5. Andrade SE, Raebel MA, Brown J, Lane K, Livingston J, Boudreau D, Rolnick SJ, Roblin D, Smith DH, Willy ME, Staffa JA, Platt R (2008): Use of antidepressant medications during pregnancy: a multisite study. Am J Obstet Gynecol 198:194 e191–e195.
  6. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004): Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881.
  7. Araki KY, Sims JR, Bhide PG (2007): Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res 1156:31–45.
  8. Arnsten AF, Li BM (2005): Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57:1377–1384.
  9. Aschner M, Gannon M (1994): Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull 33:345–349.
  10. Aschner M, Guilarte TR, Schneider JS, Zheng W (2007): Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147.
  11. Aubert I, Brana C, Pellevoisin C, Giros B, Caille I, Carles D, Vital C, Bloch B (1997): Molecular anatomy of the development of the human substantia nigra. J Comp Neurol 379:72–87.
  12. Bada HS, Das A, Bauer CR, Shankaran S, Lester B, LaGasse L, Hammond J, Wright LL, Higgins R (2007): Impact of prenatal cocaine exposure on child behavior problems through school age. Pediatrics 119:e348–e359.
  13. Berkowitz GS, Wetmur JG, Birman-Deych E, Obel J, Lapinski RH, Godbold JH, Holzman IR, Wolff MS (2004): In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ Health Perspect 112:388–391.
  14. Biederman J, Faraone SV (2005): Attention-deficit hyperactivity disorder. Lancet 366:237–248.
  15. Blakely RD, De Felice LJ, Hartzell HC (1994): Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol 196:263–281.
  16. Bonnin A, Peng W, Hewlett W, Levitt P (2006): Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141:781–794.
  17. Bonnin A, Torii M, Wang L, Rakic P, Levitt P (2007): Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10:588–597.
  18. Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007): Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127.
  19. Bowen SE, Hannigan JH (2006): Developmental toxicity of prenatal exposure to toluene. AAPS J 8:E419–E424.
  20. Broening HW, Morford LL, Inman-Wood SL, Fukumura M, Vorhees CV (2001): 3,4-methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci 21:3228–3235.
  21. Brown RM, Crane AM, Goldman PS (1979): Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168:133–150.
  22. Bushnell PJ, Moser VC, MacPhail RC, Oshiro WM, Derr-Yellin EC, Phillips PM, Kodavanti PR (2002): Neurobehavioral assessments of rats perinatally exposed to a commercial mixture of polychlorinated biphenyls. Toxicol Sci 68:109–120.
  23. Caille I, Dumartin B, Le Moine C, Begueret J, Bloch B (1995): Ontogeny of the D1 dopamine receptor in the rat striatonigral system: an immunohistochemical study. Eur J Neurosci 7:714–722.
  24. Campbell NG, Koprich JB, Kanaan NM, Lipton JW (2006): MDMA administration to pregnant Sprague-Dawley rats results in its passage to the fetal compartment. Neurotoxicol Teratol 28:459–465.
  25. Cappon GD, Pu C, Vorhees CV (2000): Time-course of methamphetamine-induced neurotoxicity in rat caudate-putamen after single-dose treatment. Brain Res 863:106–111.
  26. Cases O, Vitalis T, Seif I, De Maeyer E, Sotelo C, Gaspar P (1996): Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16:297–307.
  27. Chang L, Alicata D, Ernst T, Volkow N (2007): Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102(suppl 1):16–32.
  28. Chang L, Smith LM, LoPresti C, Yonekura ML, Kuo J, Walot I, Ernst T (2004): Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res 132:95–106.
  29. Cheslack-Postava K, Fallin MD, Avramopoulos D, Connors SL, Zimmerman AW, Eberhart CG, Newschaffer CJ (2007): Beta2-adrenergic receptor gene variants and risk for autism in the AGRE cohort. Mol Psychiatry 12:283–291.
  30. Cho DH, Lyu HM, Lee HB, Kim PY, Chin K (1991): Behavioral teratogenicity of methamphetamine. J Toxicol Sci 16(suppl 1):37–49.

    External Resources

  31. Clark L, Cools R, Robbins TW (2004): The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53.
  32. Collette F, Van der Linden M (2002): Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 26:105–125.
  33. Connors SL, Crowell DE, Eberhart CG, Copeland J, Newschaffer CJ, Spence SJ, Zimmerman AW (2005): Beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J Child Neurol 20:876–884.
  34. Connors SL, Levitt P, Matthews SG, Slotkin TA, Johnston MV, Kinney HC, Johnson WG, Dailey RM, Zimmerman AW (2008): Fetal mechanisms in neurodevelopmental disorders. Pediatr Neurol 38:163–176.
  35. Costa LG, Aschner M, Vitalone A, Syversen T, Soldin OP (2004): Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 44:87–110.
  36. Cote F, Fligny C, Bayard E, Launay JM, Gershon MD, Mallet J, Vodjdani G (2007): Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci USA 104:329–334.
  37. Crandall JE, Hackett HE, Tobet SA, Kosofsky BE, Bhide PG (2004): Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cereb Cortex 14:665–675.
  38. Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG (2007): Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci 27:3813–3822.
  39. Crawford CA, Williams MT, Kohutek JL, Choi FY, Yoshida ST, McDougall SA, Vorhees CV (2006): Neonatal 3,4-methylenedioxymethamphetamine (MDMA) exposure alters neuronal protein kinase A activity, serotonin and dopamine content, and [35S]GTPgammaS binding in adult rats. Brain Res 1077:178–186.
  40. Dannlowski U, Ohrmann P, Bauer J, Deckert J, Hohoff C, Kugel H, Arolt V, Heindel W, Kersting A, Baune BT, Suslow T (2008): 5-HTTLPR biases amygdala activity in response to masked facial expressions in major depression. Neuropsychopharmacology 33:418–424.
  41. Degnan KA, Fox NA (2007): Behavioral inhibition and anxiety disorders: multiple levels of a resilience process. Dev Psychopathol 19:729–746.
  42. Dewar KM, Montreuil B, Grondin L, Reader TA (1989): Dopamine D2 receptors labeled with [3H]raclopride in rat and rabbit brains: equilibrium binding, kinetics, distribution and selectivity. J Pharmacol Exp Ther 250:696–706.
  43. Dewar KM, Reader TA (1989): Distribution of dopamine D1 and D2 receptors in rabbit cortical areas, hippocampus, and neostriatum in relation to dopamine contents. Synapse 4:378–386.
  44. Dingemans MM, Ramakers GM, Gardoni F, van Kleef RG, Bergman A, Di Luca M, van den Berg M, Westerink RH, Vijverberg HP (2007): Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Perspect 115:865–870.
  45. Dow-Edwards D, Mayes L, Spear L, Hurd Y (1999): Cocaine and development: clinical, behavioral, and neurobiological perspectives – a symposium report. Neurotoxicol Teratol 21:481–490.
  46. Elliott R (2003): Executive functions and their disorders. Br Med Bull 65:49–59.
  47. Elston GN (2003): Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13:1124–1138.
  48. Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ, Wetmur JG, Wolff MS (2007): Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol 165:1397–1404.
  49. Ericson JE, Crinella FM, Clarke-Stewart KA, Allhusen VD, Chan T, Robertson RT (2007): Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicol Teratol 29:181–187.
  50. Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M (2006): Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111:199–215.
  51. Erikson KM, Thompson K, Aschner J, Aschner M (2007): Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377.
  52. Evans SM, Cone EJ, Henningfield JE (1996): Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J Pharmacol Exp Ther 279:1345–1356.
  53. Flores C, Manitt C, Rodaros D, Thompson KM, Rajabi H, Luk KC, Tritsch NX, Sadikot AF, Stewart J, Kennedy TE (2005): Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Mol Psychiatry 10:606–612.
  54. Forcelli PA, Heinrichs SC (2008): Teratogenic effects of maternal antidepressant exposure on neural substrates of drug-seeking behavior in offspring. Addict Biol 13:52–62.
  55. Francis DD, Caldji C, Champagne F, Plotsky PM, Meaney MJ (1999): The role of corticotropin-releasing factor – norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biol Psychiatry 46:1153–1166.
  56. Friedman E, Yadin E, Wang HY (1996): Effect of prenatal cocaine on dopamine receptor-G protein coupling in mesocortical regions of the rabbit brain. Neuroscience 70:739–747.
  57. Gabriel M, Taylor C, Burhans L (2003): In utero cocaine, discriminative avoidance learning with low-salient stimuli and learning-related neuronal activity in rabbits (Oryctolagus cuniculus). Behav Neurosci 117:912–926.
  58. Galineau L, Belzung C, Kodas E, Bodard S, Guilloteau D, Chalon S (2005): Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) exposure induces long-term alterations in the dopaminergic and serotonergic functions in the rat. Brain Res Dev Brain Res 154:165–176.
  59. Garcia SJ, Gellein K, Syversen T, Aschner M (2007): Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicol Sci 95:205–214.
  60. Gaspar P, Cases O, Maroteaux L (2003): The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012.
  61. Gee JR, Moser VC (2008): Acute postnatal exposure to brominated diphenylether 47 delays neuromotor ontogeny and alters motor activity in mice. Neurotoxicol Teratol 30:79–87.
  62. Gingras JL, O’Donnell KJ (1998): State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: an assessment of fetal state, arousal, and regulation competency. Ann NY Acad Sci 846:262–276.
  63. Gingrich JA, Hen R (2001): Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology (Berl) 155:1–10.
  64. Girault JA, Greengard P (2004): The neurobiology of dopamine signaling. Arch Neurol 61:641–644.
  65. Goldman-Rakic PS (1996): The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philo Trans R Soc Lond B Biol Sci 351:1445–1453.
  66. Goldman-Rakic PS (1998): The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711.
  67. Goldman-Rakic PS, Lidow MS, Gallager DW (1990): Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10:2125–2138.
  68. Gospe SM Jr, Zhou SS (2000): Prenatal exposure to toluene results in abnormal neurogenesis and migration in rat somatosensory cortex. Pediatr Res 47:362–368.
  69. Gressens P, Kosofsky BE, Evrard P (1992): Cocaine-induced disturbances of corticogenesis in the developing murine brain. Neurosci Lett 140:113–116.
  70. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002): Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400.
  71. Guerriero RM, Rajadhyaksha A, Crozatier C, Giros B, Nosten-Bertrand M, Kosofsky BE (2005): Augmented constitutive CREB expression in the nucleus accumbens and striatum may contribute to the altered behavioral response to cocaine of adult mice exposed to cocaine in utero. Dev Neurosci 27:235–248.
  72. Guilarte TR, McGlothan JL, Degaonkar M, Chen MK, Barker PB, Syversen T, Schneider JS (2006): Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study. Toxicol Sci 94:351–358.
  73. Haber SN, Ryoo H, Cox C, Lu W (1995): Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362:400–410.
  74. Harden TK, Wolfe BB, Sporn JR, Perkins JP, Molinoff PB (1977): Ontogeny of beta-adrenergic receptors in rat cerebral cortex. Brain Res 125:99–108.
  75. Hartig PR (1994): Molecular pharmacology of serotonin receptors. EXS 71:93–102.
  76. Harvey JA (2004): Cocaine effects on the developing brain: current status. Neurosci Biobehav Rev 27:751–764.
  77. Hellendall RP, Schambra UB, Liu JP, Lauder JM (1993): Prenatal expression of 5-HT1C and 5-HT2 receptors in the rat central nervous system. Exp Neurol 120:186–201.
  78. Herlenius E, Lagercrantz H (2004): Development of neurotransmitter systems during critical periods. Exp Neurol 190(suppl 1):S8–S21.
  79. Hirshfeld DR, Rosenbaum JF, Biederman J, Bolduc EA, Faraone SV, Snidman N, Reznick JS, Kagan J (1992): Stable behavioral inhibition and its association with anxiety disorder. J Am Acad Child Adolesc Psychiatry 31:103–111.
  80. Holmes A, le Guisquet AM, Vogel E, Millstein RA, Leman S, Belzung C (2005): Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neurosci Biobehav Rev 29:1335–1346.
  81. Hougaard KS, Hass U, Lund SP, Simonsen L (1999): Effects of prenatal exposure to toluene on postnatal development and behavior in rats. Neurotoxicol Teratol 21:241–250.
  82. Hoyer D, Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites: apparent absence of 5-HT1B recognition sites. Brain Res 376:85–96.
  83. Hsieh CT, Liang JS, Peng SS, Lee WT (2007): Seizure associated with total parenteral nutrition-related hypermanganesemia. Pediatr Neurol 36:181–183.
  84. Hyman SE, Malenka RC (2001): Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703.
  85. Jackson MB, Yakel JL (1995): The 5-HT3 receptor channel. Annu Rev Physiol 57:447–468.
  86. Jayanthi LD, Ramamoorthy S (2005): Regulation of monoamine transporters: influence of psychostimulants and therapeutic antidepressants. AAPS J 7:E728–E738.
  87. Jenkins AJ, Keenan RM, Henningfield JE, Cone EJ (2002): Correlation between pharmacological effects and plasma cocaine concentrations after smoked administration. J Anal Toxicol 26:382–392.
  88. Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S (2007): Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 11:241–260.
  89. Jones L, Fischer I, Levitt P (1996): Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure. Cereb Cortex 6:431–445.
  90. Jones LB, Stanwood GD, Reinoso BS, Washington RA, Wang HY, Friedman E, Levitt P (2000): In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons. J Neurosci 20:4606–4614.
  91. Jung AB, Bennett JP Jr (1996): Development of striatal dopaminergic function. I. Pre- and postnatal development of mRNAs and binding sites for striatal D1 (D1a) and D2 (D2a) receptors. Brain Res Dev Brain Res 94:109–120.
  92. Kafritsa Y, Fell J, Long S, Bynevelt M, Taylor W, Milla P (1998): Long-term outcome of brain manganese deposition in patients on home parenteral nutrition. Arch Dis Child 79:263–265.
  93. Kagan J, Snidman N (1999): Early childhood predictors of adult anxiety disorders. Biol Psychiatry 46:1536–1541.
  94. Kagan J, Snidman N, Kahn V, Towsley S (2007): The preservation of two infant temperaments into adolescence. Monogr Soc Res Child Dev 72:1–75, vii, discussion 76–91.
  95. Kalivas PW, Volkow ND (2005): The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413.
  96. Karmel BZ, Gardner JM (1996): Prenatal cocaine exposure effects on arousal-modulated attention during the neonatal period. Dev Psychobiol 29:463–480.
  97. Kasirsky G (1971): Teratogenic effects of methamphetamine in mice and rabbits. J Am Osteopath Assoc 70:1119–1120.
  98. Kebabian JW, Calne DB (1979): Multiple receptors for dopamine. Nature 277:93–96.
  99. Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER (2006): Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–615.
  100. Kim H, Lim SW, Kim S, Kim JW, Chang YH, Carroll BJ, Kim DK (2006): Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA 296:1609–1618.
  101. Kiyatkin EA (1995): Functional significance of mesolimbic dopamine. Neurosci Biobehav Rev 19:573–598.
  102. Koprich JB, Chen EY, Kanaan NM, Campbell NG, Kordower JH, Lipton JW (2003): Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) alters exploratory behavior, reduces monoamine metabolism, and increases forebrain tyrosine hydroxylase fiber density of juvenile rats. Neurotoxicol Teratol 25:509–517.
  103. Kuchiiwa S, Cheng SB, Nagatomo I, Akasaki Y, Uchida M, Tominaga M, Hashiguchi W, Kuchiiwa T (2002): In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin decreases serotonin-immunoreactive neurons in raphe nuclei of male mouse offspring. Neurosci Lett 317:73–76.
  104. Lambe EK, Krimer LS, Goldman-Rakic PS (2000): Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J Neurosci 20:8780–8787.
  105. Lauder J, Bloom F (1974a): Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei, and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155:469–482.
  106. Lauder JM, Bloom FE (1974b): Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155:469–481.
  107. Lauder JM, Bloom FE (1975): Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. II. Synaptogenesis. J Comp Neurol 163:251–264.
  108. Laviola G, Gioiosa L, Adriani W, Palanza P (2005): D-amphetamine-related reinforcing effects are reduced in mice exposed prenatally to estrogenic endocrine disruptors. Brain Res Bull 65:235–240.
  109. Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, El Mestikawy S, Seif I, Gaspar P (1996): Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:823–835.
  110. Lee CT, Chen J, Hayashi T, Tsai SY, Sanchez JF, Errico SL, Amable R, Su TP, Lowe RH, Huestis MA, Shen J, Becker KG, Geller HM, Freed WJ (2008): A mechanism for the inhibition of neural progenitor cell proliferation by cocaine. PLoS Med 5:e117.
  111. Lee JW (2000): Manganese intoxication. Arch Neurol 57:597–599.
  112. Levin ED, Addy N, Baruah A, Elias A, Christopher NC, Seidler FJ, Slotkin TA (2002): Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol 24:733–741.
  113. Levitt P, Moore RY (1978): Noradrenaline neuron innervation of the neocortex in the rat. Brain Res 139:219–231.
  114. Levitt P, Moore RY (1979): Development of the noradrenergic innervation of neocortex. Brain Res 162:243–259.
  115. Levitt P, Rakic P (1982): The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. Brain Res 256:35–57.
  116. Levitt P, Rakic P, Goldman-Rakic P (1984): Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227:23–36.
  117. Lidov HG, Molliver ME (1982): Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull 9:559–604.
  118. Lidow MS (1995a): D1- and D2 dopaminergic receptors in the developing cerebral cortex of macaque monkey: a film autoradiographic study. Neuroscience 65:439–452.
  119. Lidow MS (1995b): Prenatal cocaine exposure adversely affects development of the primate cerebral cortex. Synapse 21:332–341.
  120. Lidow MS (2003): Consequences of prenatal cocaine exposure in nonhuman primates. Brain Res Dev Brain Res 147:23–36.
  121. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991): Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671.
  122. Lidow MS, Song ZM (2001): Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J Comp Neurol 435:263–275.
  123. Lin L, Isacson O (2006): Axonal growth regulation of fetal and embryonic stem cell-derived dopaminergic neurons by Netrin-1 and Slits. Stem Cells 24:2504–2513.
  124. Linares TJ, Singer LT, Kirchner HL, Short EJ, Min MO, Hussey P, Minnes S (2006): Mental health outcomes of cocaine-exposed children at 6 years of age. J Pediatr Psychol 31:85–97.
  125. Lindvall O, Bjorkland A, Divac I (1978): Organization of catecholamine neurons projecting to the frontal cortex of the rat. Brain Res 142:1–24.
  126. Ljung K, Vahter M (2007): Time to re-evaluate the guideline value for manganese in drinking water? Environ Health Perspect 115:1533–1538.
  127. Llansola M, Erceg S, Monfort P, Montoliu C, Felipo V (2007): Prenatal exposure to polybrominated diphenylether 99 enhances the function of the glutamate-nitric oxide-cGMP pathway in brain in vivo and in cultured neurons. Eur J Neurosci 25:373–379.
  128. Lu C, Barr DB, Pearson MA, Waller LA (2008): Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environ Health Perspect 116:537–542.
  129. Lucki I (1998): The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162.
  130. Lyles J, Cadet JL (2003): Methylenedioxymethamphetamine (MDMA, ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Res Brain Res Rev 42:155–168.
  131. Lynd-Balta E, Haber SN (1994a): The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640.
  132. Lynd-Balta E, Haber SN (1994b): The organization of midbrain projections to the ventral striatum in the primate. Neuroscience 59:609–623.
  133. Malanga CJ, Kosofsky BE (2003): Does drug abuse beget drug abuse? Behavioral analysis of addiction liability in animal models of prenatal drug exposure. Brain Res Dev Brain Res 147:47–57.
  134. Malanga CJ, Riday TT, Carlezon WA Jr, Kosofsky BE (2008): Prenatal exposure to cocaine increases the rewarding potency of cocaine and selective dopaminergic agonists in adult mice. Biol Psychiatry 63:214–221.
  135. Maschi S, Clavenna A, Campi R, Schiavetti B, Bernat M, Bonati M (2008): Neonatal outcome following pregnancy exposure to antidepressants: a prospective controlled cohort study. BJOG 115:283–289.
  136. Mayes L, Snyder PJ, Langlois E, Hunter N (2007): Visuospatial working memory in school-aged children exposed in utero to cocaine. Child Neuropsychol 13:205–218.
  137. Mayes LC (2002): A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicol Teratol 24:385–395.
  138. Mayes LC, Cicchetti D, Acharyya S, Zhang H (2003): Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children. J Dev Behav Pediatr 24:323–335.
  139. McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J (2007): Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567.
  140. McElhatton PR, Bateman DN, Evans C, Pughe KR, Thomas SH (1999): Congenital anomalies after prenatal ecstasy exposure. Lancet 354:1441–1442.
  141. Melo P, Moreno VZ, Vazquez SP, Pinazo-Duran MD, Tavares MA (2006): Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine. Brain Res 1106:21–29.
  142. Melo P, Pinazo-Duran MD, Salgado-Borges J, Tavares MA (2008): Correlation of axon size and myelin occupancy in rats prenatally exposed to methamphetamine. Brain Res 1222:61–68.
  143. Meyer A, Seidler FJ, Aldridge JE, Slotkin TA (2005): Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol Appl Pharmacol 203:154–166.
  144. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998): Dopamine receptors: from structure to function. Physiol Rev 78:189–225.
  145. Miyagawa K, Narita M, Narita M, Niikura K, Akama H, Tsurukawa Y, Suzuki T (2007): Changes in central dopaminergic systems with the expression of Shh or GDNF in mice perinatally exposed to bisphenol-A. Nihon Shinkei Seishin Yakurigaku Zasshi 27:69–75.
  146. Moran-Gates T, Gan L, Park YS, Zhang K, Baldessarini RJ, Tarazi FI (2006): Repeated antipsychotic drug exposure in developing rats: dopamine receptor effects. Synapse 59:92–100.
  147. Moreno M, Canadas F, Cardona D, Sunol C, Campa L, Sanchez-Amate MC, Flores P, Sanchez-Santed F (2008): Long-term monoamine changes in the striatum and nucleus accumbens after acute chlorpyrifos exposure. Toxicol Lett 176:162–167.
  148. Morford LL, Inman-Wood SL, Gudelsky GA, Williams MT, Vorhees CV (2002): Impaired spatial and sequential learning in rats treated neonatally with D-fenfluramine. Eur J Neurosci 16:491–500.
  149. Morilak DA, Ciaranello RD (1993): Ontogeny of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain. Neuroscience 55:869–880.
  150. Morris MJ, Dausse JP, Devynck MA, Meyer P (1980): Ontogeny of alpha 1 and alpha 2-adrenoceptors in rat brain. Brain Res 190:268–271.
  151. Morrow BA, Elsworth JD, Roth RH (2002): Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats. Behav Brain Res 129:217–223.
  152. Moser VC (2007): Animal models of chronic pesticide neurotoxicity. Hum Exp Toxicol 26:321–331.
  153. Murphy DL, Lesch KP (2008): Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9:85–96.
  154. Murphy EH, Fischer I, Friedman E, Grayson D, Jones L, Levitt P, O’Brien-Jenkins A, Wang HY, Wang XH (1997): Cocaine administration in pregnant rabbits alters cortical structure and function in their progeny in the absence of maternal seizures. Exp Brain Res 114:433–441.
  155. Nagatomo S, Umehara F, Hanada K, Nobuhara Y, Takenaga S, Arimura K, Osame M (1999): Manganese intoxication during total parenteral nutrition: report of two cases and review of the literature. J Neurol Sci 162:102–105.
  156. Nasif FJ, Cuadra GR, Ramirez OA (1999): Permanent alteration of central noradrenergic system by prenatally administered amphetamine. Brain Res Dev Brain Res 112:181–188.
  157. Nasuti C, Gabbianelli R, Falcioni ML, Di Stefano A, Sozio P, Cantalamessa F (2007): Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 229:194–205.
  158. Nestler EJ (2001): Neurobiology: total recall – the memory of addiction. Science 292:2266–2267.
  159. Nora JJ, Trasler DG, Fraser FC (1965): Malformations in mice induced by dexamphetamine sulphate. Lancet ii:1021–1022.

    External Resources

  160. Normandin L, Panisset M, Zayed J (2002): Manganese neurotoxicity: behavioral, pathological, and biochemical effects following various routes of exposure. Rev Environ Health 17:189–217.
  161. Novikova SI, He F, Bai J, Cutrufello NJ, Lidow MS, Undieh AS (2008): Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLoS ONE 3:e1919.
  162. Nowak P, Szczerbak G, Nitka D, Kostrzewa RM, Sitkiewicz T, Brus R (2008): Effect of prenatal lead exposure on nigrostriatal neurotransmission and hydroxyl radical formation in rat neostriatum: Dopaminergic-nitrergic interaction. Toxicology 246:83–89.
  163. Oberlander TF, Bonaguro RJ, Misri S, Papsdorf M, Ross CJ, Simpson EM (2008): Infant serotonin transporter (SLC6A4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Mol Psychiatry 13:65–73.
  164. Ohtani N, Goto T, Waeber C, Bhide PG (2003): Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23:2840–2850.
  165. Olivier B, Mos J, van Oorschot R, Hen R (1995): Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28(suppl 2):80–90.
  166. Olney JW, Wozniak DF, Farber NB, Jevtovic-Todorovic V, Bittigau P, Ikonomidou C (2002): The enigma of fetal alcohol neurotoxicity. Ann Med 34:109–119.
  167. Olson L, Seiger A (1972): Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 137:301–316.
  168. Olson L, Seiger A, Fuxe K (1972): Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res 44:283–288.
  169. Pappas BA, Zhang D, Davidson CM, Crowder T, Park GA, Fortin T (1997): Perinatal manganese exposure: behavioral, neurochemical, and histopathological effects in the rat. Neurotoxicol Teratol 19:17–25.
  170. Parlaman JP, Thompson BL, Levitt P, Stanwood GD (2007): Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. Eur J Pharmacol 563:124–129.
  171. Pearson KH, Nonacs RM, Viguera AC, Heller VL, Petrillo LF, Brandes M, Hennen J, Cohen LS (2007): Birth outcomes following prenatal exposure to antidepressants. J Clin Psychiatry 68:1284–1289.
  172. Persico AM, Di Pino G, Levitt P (2006): Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res 1095:17–25.
  173. Piper BJ (2007): A developmental comparison of the neurobehavioral effects of ecstasy (MDMA). Neurotoxicol Teratol 29:288–300.
  174. Pittman RN, Minneman KP, Molinoff PB (1980): Ontogeny of beta 1- and beta 2-adrenergic receptors in rat cerebellum and cerebral cortex. Brain Res 188:357–368.
  175. Plessinger MA (1998): Prenatal exposure to amphetamines: risks and adverse outcomes in pregnancy. Obstet Gynecol Clin North Am 25:119–138.
  176. Pranzatelli MR (1993): Regional differences in the ontogeny of 5-hydroxytryptamine-1C binding sites in rat brain and spinal cord. Neurosci Lett 149:9–11.
  177. Rao PA, Molinoff PB, Joyce JN (1991): Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: a quantitative autoradiographic study. Dev Brain Res 60:161–177.
  178. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW (2006): Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118:e1845–e1859.
  179. Reader TA, Dewar KM, Grondin L (1989a): Distribution of monoamines and metabolites in rabbit neostriatum, hippocampus and cortex. Brain Res Bull 23:237–247.
  180. Reader TA, Grondin L, Montreuil B, Dewar KM (1989b): Dopamine D1 receptors labelled with [3H]SCH23390 in rabbit cerebral cortex and neostriatum: equilibrium binding, kinetics and selectivity. Naunyn Schmiedebergs Arch Pharmacol 340:617–625.
  181. Rebsam A, Seif I, Gaspar P (2002): Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22:8541–8552.
  182. Reichel CM, Wacan JJ, Farley CM, Stanley BJ, Crawford CA, McDougall SA (2006): Postnatal manganese exposure attenuates cocaine-induced locomotor activity and reduces dopamine transporters in adult male rats. Neurotoxicol Teratol 28:323–332.
  183. Reinoso BS, Undie AS, Levitt P (1996): Dopamine receptors mediate differential morphological effects on cerebral cortical neurons in vitro. J Neurosci Res 43:439–453.
  184. Ren JQ, Malanga CJ, Tabit E, Kosofsky BE (2004): Neuropathological consequences of prenatal cocaine exposure in the mouse. Int J Dev Neurosci 22:309–320.
  185. Rhodes MC, Seidler FJ, Abdel-Rahman A, Tate CA, Nyska A, Rincavage HL, Slotkin TA (2004): Terbutaline is a developmental neurotoxicant: effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. J Pharmacol Exp Ther 308:529–537.
  186. Richardson GA, Conroy ML, Day NL (1996): Prenatal cocaine exposure: effects on the development of school-age children. Neurotoxicol Teratol 18:627–634.
  187. Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW (2006): Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson’s disease. FASEB J 20:1695–1697.
  188. Rocha BA, Mead AN, Kosofsky BE (2002): Increased vulnerability to self-administer cocaine in mice prenatally exposed to cocaine. Psychopharmacology (Berl) 163:221–229.
  189. Rodier PM (2004): Environmental causes of central nervous system maldevelopment. Pediatrics 113:1076–1083.
  190. Roegge CS, Timofeeva OA, Seidler FJ, Slotkin TA, Levin ED (2008): Developmental diazinon neurotoxicity in rats: later effects on emotional response. Brain Res Bull 75:166–172.
  191. Romano AG, Harvey JA (1996): Elicitation and modification of the rabbit’s nictitating membrane reflex following prenatal exposure to cocaine. Pharmacol Biochem Behav 53:857–862.
  192. Rosenbaum JF, Biederman J, Bolduc-Murphy EA, Faraone SV, Chaloff J, Hirshfeld DR, Kagan J (1993): Behavioral inhibition in childhood: a risk factor for anxiety disorders. Harv Rev Psychiatry 1:2–16.
  193. Rosengarten H, Friedhoff AJ (1979): Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science 203:1133–1135.
  194. Rosengarten H, Quartermain D (2002): Effect of prenatal administration of haloperidol, risperidone, quetiapine and olanzapine on spatial learning and retention in adult rats. Pharmacol Biochem Behav 72:575–579.
  195. Sales N, Martres MP, Bouthenet ML, Schwartz JC (1989): Ontogeny of dopaminergic D-2 receptors in the rat nervous system: characterization and detailed autoradiographic mapping with [125I]iodosulpride. Neuroscience 28:673–700.
  196. Scalzo FM, Ali SF, Holson RR, Williams RL (1993): Haloperidol effects on the developing dopamine system: conflicting results and implications for neurobehavioral teratology research. Ann Ist Super Sanita 29:139–146.
  197. Scalzo FM, Spear LP (1985): Chronic haloperidol during development attenuates dopamine autoreceptor function in striatal and mesolimbic brain regions of young and older adult rats. Psychopharmacology (Berl) 85:271–276.
  198. Schaefer TL, Skelton MR, Herring NR, Gudelsky GA, Vorhees CV, Williams MT (2008): Short- and long-term effects of (+)-methamphetamine and (+/–)-3,4-methylenedioxymethamphetamine on monoamine and corticosterone levels in the neonatal rat following multiple days of treatment. J Neurochem 104:1674–1685.
  199. Schambra UB, Duncan GE, Breese GR, Fornaretto MG, Caron MG, Fremeau RT Jr (1994): Ontogeny of D1A and D2 dopamine receptor subtypes in rat brain using in situ hybridization and receptor binding. Neuroscience 62:65–85.
  200. Schwartz CE, Snidman N, Kagan J (1999): Adolescent social anxiety as an outcome of inhibited temperament in childhood. J Am Acad Child Adolesc Psychiatry 38:1008–1015.
  201. Segal M, Pickel V, Bloom F (1973): The projections of the nucleus locus coeruleus: an autoradiographic study. Life Sci 13:817–821.
  202. Simansky KJ, Baker G, Kachelries WJ, Hood H, Romano AG, Harvey JA (1998): Prenatal exposure to cocaine reduces dopaminergic D1-mediated motor function but spares the enhancement of learning by amphetamine in rabbits. Ann NY Acad Sci 846:375–378.
  203. Simansky KJ, Kachelries WJ (1996): Prenatal exposure to cocaine selectively disrupts motor responding to D-amphetamine in young and mature rabbits. Neuropharmacology 35:71–78.
  204. Singer LT, Minnes S, Short E, Arendt R, Farkas K, Lewis B, Klein N, Russ S, Min MO, Kirchner HL (2004): Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA 291:2448–2456.
  205. Singer LT, Nelson S, Short E, Min MO, Lewis B, Russ S, Minnes S (2008): Prenatal cocaine exposure: drug and environmental effects at 9 years. J Pediatr 153:105–111.
  206. Singh KP, Singh M (2001): Effect of single prenatal haloperidol exposure on hippocampus and striatum of developing rat brain. Indian J Exp Biol 39:223–229.
  207. Singh KP, Singh M (2002): Effect of prenatal haloperidol exposure on behavioral alterations in rats. Neurotoxicol Teratol 24:497–502.
  208. Skelton MR, Williams MT, Vorhees CV (2008): Developmental effects of 3,4-methylenedioxymethamphetamine: a review. Behav Pharmacol 19:91–111.
  209. Slamberova R, Bernaskova K, Matejovska I, Schutova B (2008): Does prenatal methamphetamine exposure affect seizure susceptibility in adult rats with acute administration of the same drug? Epilepsy Res 78:33–39.
  210. Slotkin TA (1998): Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Ther 285:931–945.
  211. Slotkin TA (2004): Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198:132–151.
  212. Slotkin TA, Kudlacz EM, Lappi SE, Tayyeb MI, Seidler FJ (1990): Fetal terbutaline exposure causes selective postnatal increases in cerebellar alpha-adrenergic receptor binding. Life Sci 47:2051–2057.
  213. Slotkin TA, Levin ED, Seidler FJ (2006): Comparative developmental neurotoxicity of organophosphate insecticides: effects on brain development are separable from systemic toxicity. Environ Health Perspect 114:746–751.
  214. Slotkin TA, Seidler FJ (2007a): Developmental exposure to terbutaline and chlorpyrifos, separately or sequentially, elicits presynaptic serotonergic hyperactivity in juvenile and adolescent rats. Brain Res Bull 73:301–309.
  215. Slotkin TA, Seidler FJ (2007b): Prenatal chlorpyrifos exposure elicits presynaptic serotonergic and dopaminergic hyperactivity at adolescence: critical periods for regional and sex-selective effects. Reprod Toxicol 23:421–427.
  216. Slotkin TA, Tate CA, Cousins MM, Seidler FJ (2001): Beta-adrenoceptor signaling in the developing brain: sensitization or desensitization in response to terbutaline. Brain Res Dev Brain Res 131:113–125.
  217. Smith L, Yonekura ML, Wallace T, Berman N, Kuo J, Berkowitz C (2003): Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J Dev Behav Pediatr 24:17–23.
  218. Smith LM, Chang L, Yonekura ML, Grob C, Osborn D, Ernst T (2001): Brain proton magnetic resonance spectroscopy in children exposed to methamphetamine in utero. Neurology 57:255–260.
  219. Smith LM, LaGasse LL, Derauf C, Grant P, Shah R, Arria A, Huestis M, Haning W, Strauss A, Della Grotta S, Liu J, Lester BM (2006): The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics 118:1149–1156.
  220. Smith LM, Lagasse LL, Derauf C, Grant P, Shah R, Arria A, Huestis M, Haning W, Strauss A, Grotta SD, Fallone M, Liu J, Lester BM (2008): Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol Teratol 30:20–28.
  221. Song ZM, Undie AS, Koh PO, Fang YY, Zhang L, Dracheva S, Sealfon SC, Lidow MS (2002): D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci 22:6092–6105.
  222. Stanwood GD, Levitt P (2001): The effects of cocaine on the developing nervous system; in Nelson CA, Luciana M (eds): Handbook of Developmental Cognitive Neuroscience. MIT Press, pp 519–536.
  223. Stanwood GD, Levitt P (2003): Repeated i.v. cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring. Neuroscience 122:579–583.
  224. Stanwood GD, Levitt P (2004): Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr Opin Pharmacol 4:65–71.
  225. Stanwood GD, Levitt P (2007): Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution. J Neurosci 27:152–157.
  226. Stanwood GD, Parlaman JP, Levitt P (2005): Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D(1) receptor mutant mice. J Comp Neurol 487:270–282.
  227. Stanwood GD, Parlaman JP, Levitt P (2006): Genetic or pharmacological inactivation of the dopamine D1 receptor differentially alters the expression of regulator of G-protein signalling (Rgs) transcripts. Eur J Neurosci 24:806–818.
  228. Stanwood GD, Washington RA, Levitt P (2001a): Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. Cereb Cortex 11:430–440.
  229. Stanwood GD, Washington RA, Shumsky JS, Levitt P (2001b): Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience 106:5–14.
  230. Sundstrom E, Kolare S, Souverbie F, Samuelsson EB, Pschera H, Lunell NO, Seiger A (1993): Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Brain Res Dev Brain Res 75:1–12.
  231. Suzuki T, Mizuo K, Miyagawa K, Narita M (2005): Exposure to bisphenol-A affects the rewarding system in mice (in Japanese). Nihon Shinkei Seishin Yakurigaku Zasshi 25:125–128.
  232. Suzuki T, Mizuo K, Nakazawa H, Funae Y, Fushiki S, Fukushima S, Shirai T, Narita M (2003): Prenatal and neonatal exposure to bisphenol-A enhances the central dopamine D1 receptor-mediated action in mice: enhancement of the methamphetamine-induced abuse state. Neuroscience 117:639–644.
  233. Szczerbak G, Nowak P, Kostrzewa RM, Brus R (2007): Maternal lead exposure produces long-term enhancement of dopaminergic reactivity in rat offspring. Neurochem Res 32:1791–1798.
  234. Tavares MA, Silva MC, Silva-Araujo A, Xavier MR, Ali SF (1996): Effects of prenatal exposure to amphetamine in the medial prefrontal cortex of the rat. Int J Dev Neurosci 14:585–596.
  235. Thompson B, Stanwood G, Levitt P (2005a): Double dissociation of the reinforcing properties of cocaine. In: Society For Neuroscience, Washington, DC.
  236. Thompson BL, Levitt P, Stanwood GD (2005b): Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behav Brain Res 164:107–116.
  237. Todd RD (1992): Neural development is regulated by classical neurotransmitters: dopamine D2 receptor stimulation enhances neurite outgrowth. Biol Psychiatry 31:794–807.
  238. Tran TT, Chowanadisai W, Crinella FM, Chicz-DeMet A, Lonnerdal B (2002): Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology 23:635–643.
  239. Vorhees CV, Inman-Wood SL, Morford LL, Broening HW, Fukumura M, Moran MS (2000): Adult learning deficits after neonatal exposure to D-methamphetamine: selective effects on spatial navigation and memory. J Neurosci 20:4732–4739.
  240. Vorhees CV, Skelton MR, Williams MT (2007): Age-dependent effects of neonatal methamphetamine exposure on spatial learning. Behav Pharmacol 18:549–562.
  241. Walderhaug E, Magnusson A, Neumeister A, Lappalainen J, Lunde H, Refsum H, Landro NI (2007): Interactive effects of sex and 5-HTTLPR on mood and impulsivity during tryptophan depletion in healthy people. Biol Psychiatry 62:593–599.
  242. Wang HY, Runyan S, Yadin E, Friedman E (1995a): Prenatal exposure to cocaine selectively reduces D1 dopamine receptor-mediated activation of striatal Gs proteins. J Pharmacol Exp Ther 273:492–498.
  243. Wang JH, Yang JZ, Wilson FA, Ma YY (2006): Differently lasting effects of prenatal and postnatal chronic clozapine/haloperidol on activity and memory in mouse offspring. Pharmacol Biochem Behav 84:468–478.
  244. Wang XH, Levitt P, Grayson DR, Murphy EH (1995b): Intrauterine cocaine exposure of rabbits: persistent elevation of GABA-immunoreactive neurons in anterior cingulate cortex but not visual cortex. Brain Res 689:32–46.
  245. Wang XH, Levitt P, O’Brien-Jenkins A, Murphy EH (1996): Normal development of tyrosine hydroxylase and serotonin immunoreactive fibers innervating anterior cingulate cortex and visual cortex in rabbits exposed prenatally to cocaine. Brain Res 715:221–224.
  246. Wasserman GA, Liu X, Parvez F, Ahsan H, Levy D, Factor-Litvak P, Kline J, van Geen A, Slavkovich V, LoIacono NJ, Cheng Z, Zheng Y, Graziano JH (2006): Water manganese exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 114:124–129.
  247. Weissman AD, Caldecott-Hazard S (1993): In utero methamphetamine effects. I. Behavior and monoamine uptake sites in adult offspring. Synapse 13:241–250.
  248. Whitaker-Azmitia PM (2001): Serotonin and brain development: role in human developmental diseases. Brain Res Bull 56:479–485.
  249. White KJ, Walline CC, Barker EL (2005): Serotonin transporters: implications for antidepressant drug development. AAPS J 7:E421–E433.
  250. Williams MT, Morford LL, Wood SL, Rock SL, McCrea AE, Fukumura M, Wallace TL, Broening HW, Moran MS, Vorhees CV (2003): Developmental 3,4-methylenedioxymethamphetamine (MDMA) impairs sequential and spatial but not cued learning independent of growth, litter effects or injection stress. Brain Res 968:89–101.
  251. Williams MT, Schaefer TL, Ehrman LA, Able JA, Gudelsky GA, Sah R, Vorhees CV (2005): 3,4-Methylenedioxymethamphetamine administration on postnatal day 11 in rats increases pituitary-adrenal output and reduces striatal and hippocampal serotonin without altering SERT activity. Brain Res 1039:97–107.
  252. Won L, Bubula N, Heller A (2002): Fetal exposure to (+/–)-methylenedioxymethamphetamine in utero enhances the development and metabolism of serotonergic neurons in three-dimensional reaggregate tissue culture. Brain Res Dev Brain Res 137:67–73.
  253. Yue Y, Widmer DA, Halladay AK, Cerretti DP, Wagner GC, Dreyer JL, Zhou R (1999): Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2. J Neurosci 19:2090–2101.
  254. Zerrate MC, Pletnikov M, Connors SL, Vargas DL, Seidler FJ, Zimmerman AW, Slotkin TA, Pardo CA (2007): Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism. J Pharmacol Exp Ther 322:16–22.
  255. Zhang L, Bai J, Undie AS, Bergson C, Lidow MS (2005): D1 dopamine receptor regulation of the levels of the cell-cycle-controlling proteins, cyclin D, P27 and Raf-1, in cerebral cortical precursor cells is mediated through cAMP-independent pathways. Cereb Cortex 15:74–84.

  

Author Contacts

Gregg D. Stanwood, PhD
Vanderbilt Kennedy Center
23rd Ave South, 476 RRB
Nashville, TN 37232-6600 (USA)
Tel. +1 615 936 3861, Fax +1 615 936 2202, E-Mail gregg.stanwood@vanderbilt.edu

  

Article Information

Received: May 19, 2008
Accepted after revision: September 8, 2008
Published online: April 17, 2009
Number of Print Pages : 16
Number of Figures : 0, Number of Tables : 0, Number of References : 255

  

Publication Details

Developmental Neuroscience

Vol. 31, No. 1-2, Year 2009 (Cover Date: April 2009)

Journal Editor: Levison S.W. (Newark, N.J.)
ISSN: 0378-5866 (Print), eISSN: 1421-9859 (Online)

For additional information: http://www.karger.com/DNE


Copyright / Drug Dosage / Disclaimer

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Abstract

Defects in the development of the brain have a profound impact on mature brain functions and underlying psychopathology. Classical neurotransmitters and neuromodulators, such as dopamine, serotonin, norepinephrine, acetylcholine, glutamate and GABA, have pleiotropic effects during brain development. In other words, these molecules produce multiple diverse effects to serve as regulators of distinct cellular functions at different times in neurodevelopment. These systems are impacted upon by abuse of a variety of illicit drugs, neurotherapeutics and environmental contaminants. In this review, we describe the impact of drugs and chemicals on brain formation and function in animal models and in human populations, highlighting sensitive periods and effects that may not emerge until later in life.

© 2009 S. Karger AG, Basel


  

Author Contacts

Gregg D. Stanwood, PhD
Vanderbilt Kennedy Center
23rd Ave South, 476 RRB
Nashville, TN 37232-6600 (USA)
Tel. +1 615 936 3861, Fax +1 615 936 2202, E-Mail gregg.stanwood@vanderbilt.edu

  

Article Information

Received: May 19, 2008
Accepted after revision: September 8, 2008
Published online: April 17, 2009
Number of Print Pages : 16
Number of Figures : 0, Number of Tables : 0, Number of References : 255

  

Publication Details

Developmental Neuroscience

Vol. 31, No. 1-2, Year 2009 (Cover Date: April 2009)

Journal Editor: Levison S.W. (Newark, N.J.)
ISSN: 0378-5866 (Print), eISSN: 1421-9859 (Online)

For additional information: http://www.karger.com/DNE


Article / Publication Details

First-Page Preview
Abstract of Review

Received: 5/19/2008
Accepted: 8/9/2008
Published online: 4/17/2009
Issue release date: April 2009

Number of Print Pages: 16
Number of Figures: 0
Number of Tables: 0

ISSN: 0378-5866 (Print)
eISSN: 1421-9859 (Online)

For additional information: http://www.karger.com/DNE


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Abreu-Villaca Y, Seidler FJ, Tate CA, Slotkin TA (2003): Nicotine is a neurotoxin in the adolescent brain: critical periods, patterns of exposure, regional selectivity, and dose thresholds for macromolecular alterations. Brain Res 979:114–128.
  2. Albert PR, Lemonde S (2004): 5-HT1A receptors, gene repression, and depression: guilt by association. Neuroscientist 10:575–593.
  3. Aldridge JE, Meyer A, Seidler FJ, Slotkin TA (2005): Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions. Toxicol Appl Pharmacol 203:132–144.
  4. Alm H, Kultima K, Scholz B, Nilsson A, Andren PE, Fex-Svenningsen A, Dencker L, Stigson M (2008): Exposure to brominated flame retardant PBDE-99 affects cytoskeletal protein expression in the neonatal mouse cerebral cortex. Neurotoxicology 29:628–637.
  5. Andrade SE, Raebel MA, Brown J, Lane K, Livingston J, Boudreau D, Rolnick SJ, Roblin D, Smith DH, Willy ME, Staffa JA, Platt R (2008): Use of antidepressant medications during pregnancy: a multisite study. Am J Obstet Gynecol 198:194 e191–e195.
  6. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004): Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881.
  7. Araki KY, Sims JR, Bhide PG (2007): Dopamine receptor mRNA and protein expression in the mouse corpus striatum and cerebral cortex during pre- and postnatal development. Brain Res 1156:31–45.
  8. Arnsten AF, Li BM (2005): Neurobiology of executive functions: catecholamine influences on prefrontal cortical functions. Biol Psychiatry 57:1377–1384.
  9. Aschner M, Gannon M (1994): Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms. Brain Res Bull 33:345–349.
  10. Aschner M, Guilarte TR, Schneider JS, Zheng W (2007): Manganese: recent advances in understanding its transport and neurotoxicity. Toxicol Appl Pharmacol 221:131–147.
  11. Aubert I, Brana C, Pellevoisin C, Giros B, Caille I, Carles D, Vital C, Bloch B (1997): Molecular anatomy of the development of the human substantia nigra. J Comp Neurol 379:72–87.
  12. Bada HS, Das A, Bauer CR, Shankaran S, Lester B, LaGasse L, Hammond J, Wright LL, Higgins R (2007): Impact of prenatal cocaine exposure on child behavior problems through school age. Pediatrics 119:e348–e359.
  13. Berkowitz GS, Wetmur JG, Birman-Deych E, Obel J, Lapinski RH, Godbold JH, Holzman IR, Wolff MS (2004): In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ Health Perspect 112:388–391.
  14. Biederman J, Faraone SV (2005): Attention-deficit hyperactivity disorder. Lancet 366:237–248.
  15. Blakely RD, De Felice LJ, Hartzell HC (1994): Molecular physiology of norepinephrine and serotonin transporters. J Exp Biol 196:263–281.
  16. Bonnin A, Peng W, Hewlett W, Levitt P (2006): Expression mapping of 5-HT1 serotonin receptor subtypes during fetal and early postnatal mouse forebrain development. Neuroscience 141:781–794.
  17. Bonnin A, Torii M, Wang L, Rakic P, Levitt P (2007): Serotonin modulates the response of embryonic thalamocortical axons to netrin-1. Nat Neurosci 10:588–597.
  18. Bouchard M, Laforest F, Vandelac L, Bellinger D, Mergler D (2007): Hair manganese and hyperactive behaviors: pilot study of school-age children exposed through tap water. Environ Health Perspect 115:122–127.
  19. Bowen SE, Hannigan JH (2006): Developmental toxicity of prenatal exposure to toluene. AAPS J 8:E419–E424.
  20. Broening HW, Morford LL, Inman-Wood SL, Fukumura M, Vorhees CV (2001): 3,4-methylenedioxymethamphetamine (ecstasy)-induced learning and memory impairments depend on the age of exposure during early development. J Neurosci 21:3228–3235.
  21. Brown RM, Crane AM, Goldman PS (1979): Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates. Brain Res 168:133–150.
  22. Bushnell PJ, Moser VC, MacPhail RC, Oshiro WM, Derr-Yellin EC, Phillips PM, Kodavanti PR (2002): Neurobehavioral assessments of rats perinatally exposed to a commercial mixture of polychlorinated biphenyls. Toxicol Sci 68:109–120.
  23. Caille I, Dumartin B, Le Moine C, Begueret J, Bloch B (1995): Ontogeny of the D1 dopamine receptor in the rat striatonigral system: an immunohistochemical study. Eur J Neurosci 7:714–722.
  24. Campbell NG, Koprich JB, Kanaan NM, Lipton JW (2006): MDMA administration to pregnant Sprague-Dawley rats results in its passage to the fetal compartment. Neurotoxicol Teratol 28:459–465.
  25. Cappon GD, Pu C, Vorhees CV (2000): Time-course of methamphetamine-induced neurotoxicity in rat caudate-putamen after single-dose treatment. Brain Res 863:106–111.
  26. Cases O, Vitalis T, Seif I, De Maeyer E, Sotelo C, Gaspar P (1996): Lack of barrels in the somatosensory cortex of monoamine oxidase A-deficient mice: role of a serotonin excess during the critical period. Neuron 16:297–307.
  27. Chang L, Alicata D, Ernst T, Volkow N (2007): Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102(suppl 1):16–32.
  28. Chang L, Smith LM, LoPresti C, Yonekura ML, Kuo J, Walot I, Ernst T (2004): Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res 132:95–106.
  29. Cheslack-Postava K, Fallin MD, Avramopoulos D, Connors SL, Zimmerman AW, Eberhart CG, Newschaffer CJ (2007): Beta2-adrenergic receptor gene variants and risk for autism in the AGRE cohort. Mol Psychiatry 12:283–291.
  30. Cho DH, Lyu HM, Lee HB, Kim PY, Chin K (1991): Behavioral teratogenicity of methamphetamine. J Toxicol Sci 16(suppl 1):37–49.

    External Resources

  31. Clark L, Cools R, Robbins TW (2004): The neuropsychology of ventral prefrontal cortex: decision-making and reversal learning. Brain Cogn 55:41–53.
  32. Collette F, Van der Linden M (2002): Brain imaging of the central executive component of working memory. Neurosci Biobehav Rev 26:105–125.
  33. Connors SL, Crowell DE, Eberhart CG, Copeland J, Newschaffer CJ, Spence SJ, Zimmerman AW (2005): Beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J Child Neurol 20:876–884.
  34. Connors SL, Levitt P, Matthews SG, Slotkin TA, Johnston MV, Kinney HC, Johnson WG, Dailey RM, Zimmerman AW (2008): Fetal mechanisms in neurodevelopmental disorders. Pediatr Neurol 38:163–176.
  35. Costa LG, Aschner M, Vitalone A, Syversen T, Soldin OP (2004): Developmental neuropathology of environmental agents. Annu Rev Pharmacol Toxicol 44:87–110.
  36. Cote F, Fligny C, Bayard E, Launay JM, Gershon MD, Mallet J, Vodjdani G (2007): Maternal serotonin is crucial for murine embryonic development. Proc Natl Acad Sci USA 104:329–334.
  37. Crandall JE, Hackett HE, Tobet SA, Kosofsky BE, Bhide PG (2004): Cocaine exposure decreases GABA neuron migration from the ganglionic eminence to the cerebral cortex in embryonic mice. Cereb Cortex 14:665–675.
  38. Crandall JE, McCarthy DM, Araki KY, Sims JR, Ren JQ, Bhide PG (2007): Dopamine receptor activation modulates GABA neuron migration from the basal forebrain to the cerebral cortex. J Neurosci 27:3813–3822.
  39. Crawford CA, Williams MT, Kohutek JL, Choi FY, Yoshida ST, McDougall SA, Vorhees CV (2006): Neonatal 3,4-methylenedioxymethamphetamine (MDMA) exposure alters neuronal protein kinase A activity, serotonin and dopamine content, and [35S]GTPgammaS binding in adult rats. Brain Res 1077:178–186.
  40. Dannlowski U, Ohrmann P, Bauer J, Deckert J, Hohoff C, Kugel H, Arolt V, Heindel W, Kersting A, Baune BT, Suslow T (2008): 5-HTTLPR biases amygdala activity in response to masked facial expressions in major depression. Neuropsychopharmacology 33:418–424.
  41. Degnan KA, Fox NA (2007): Behavioral inhibition and anxiety disorders: multiple levels of a resilience process. Dev Psychopathol 19:729–746.
  42. Dewar KM, Montreuil B, Grondin L, Reader TA (1989): Dopamine D2 receptors labeled with [3H]raclopride in rat and rabbit brains: equilibrium binding, kinetics, distribution and selectivity. J Pharmacol Exp Ther 250:696–706.
  43. Dewar KM, Reader TA (1989): Distribution of dopamine D1 and D2 receptors in rabbit cortical areas, hippocampus, and neostriatum in relation to dopamine contents. Synapse 4:378–386.
  44. Dingemans MM, Ramakers GM, Gardoni F, van Kleef RG, Bergman A, Di Luca M, van den Berg M, Westerink RH, Vijverberg HP (2007): Neonatal exposure to brominated flame retardant BDE-47 reduces long-term potentiation and postsynaptic protein levels in mouse hippocampus. Environ Health Perspect 115:865–870.
  45. Dow-Edwards D, Mayes L, Spear L, Hurd Y (1999): Cocaine and development: clinical, behavioral, and neurobiological perspectives – a symposium report. Neurotoxicol Teratol 21:481–490.
  46. Elliott R (2003): Executive functions and their disorders. Br Med Bull 65:49–59.
  47. Elston GN (2003): Cortex, cognition and the cell: new insights into the pyramidal neuron and prefrontal function. Cereb Cortex 13:1124–1138.
  48. Engel SM, Berkowitz GS, Barr DB, Teitelbaum SL, Siskind J, Meisel SJ, Wetmur JG, Wolff MS (2007): Prenatal organophosphate metabolite and organochlorine levels and performance on the Brazelton Neonatal Behavioral Assessment Scale in a multiethnic pregnancy cohort. Am J Epidemiol 165:1397–1404.
  49. Ericson JE, Crinella FM, Clarke-Stewart KA, Allhusen VD, Chan T, Robertson RT (2007): Prenatal manganese levels linked to childhood behavioral disinhibition. Neurotoxicol Teratol 29:181–187.
  50. Erikson KM, Dorman DC, Fitsanakis V, Lash LH, Aschner M (2006): Alterations of oxidative stress biomarkers due to in utero and neonatal exposures of airborne manganese. Biol Trace Elem Res 111:199–215.
  51. Erikson KM, Thompson K, Aschner J, Aschner M (2007): Manganese neurotoxicity: a focus on the neonate. Pharmacol Ther 113:369–377.
  52. Evans SM, Cone EJ, Henningfield JE (1996): Arterial and venous cocaine plasma concentrations in humans: relationship to route of administration, cardiovascular effects and subjective effects. J Pharmacol Exp Ther 279:1345–1356.
  53. Flores C, Manitt C, Rodaros D, Thompson KM, Rajabi H, Luk KC, Tritsch NX, Sadikot AF, Stewart J, Kennedy TE (2005): Netrin receptor deficient mice exhibit functional reorganization of dopaminergic systems and do not sensitize to amphetamine. Mol Psychiatry 10:606–612.
  54. Forcelli PA, Heinrichs SC (2008): Teratogenic effects of maternal antidepressant exposure on neural substrates of drug-seeking behavior in offspring. Addict Biol 13:52–62.
  55. Francis DD, Caldji C, Champagne F, Plotsky PM, Meaney MJ (1999): The role of corticotropin-releasing factor – norepinephrine systems in mediating the effects of early experience on the development of behavioral and endocrine responses to stress. Biol Psychiatry 46:1153–1166.
  56. Friedman E, Yadin E, Wang HY (1996): Effect of prenatal cocaine on dopamine receptor-G protein coupling in mesocortical regions of the rabbit brain. Neuroscience 70:739–747.
  57. Gabriel M, Taylor C, Burhans L (2003): In utero cocaine, discriminative avoidance learning with low-salient stimuli and learning-related neuronal activity in rabbits (Oryctolagus cuniculus). Behav Neurosci 117:912–926.
  58. Galineau L, Belzung C, Kodas E, Bodard S, Guilloteau D, Chalon S (2005): Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) exposure induces long-term alterations in the dopaminergic and serotonergic functions in the rat. Brain Res Dev Brain Res 154:165–176.
  59. Garcia SJ, Gellein K, Syversen T, Aschner M (2007): Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain. Toxicol Sci 95:205–214.
  60. Gaspar P, Cases O, Maroteaux L (2003): The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci 4:1002–1012.
  61. Gee JR, Moser VC (2008): Acute postnatal exposure to brominated diphenylether 47 delays neuromotor ontogeny and alters motor activity in mice. Neurotoxicol Teratol 30:79–87.
  62. Gingras JL, O’Donnell KJ (1998): State control in the substance-exposed fetus. I. The fetal neurobehavioral profile: an assessment of fetal state, arousal, and regulation competency. Ann NY Acad Sci 846:262–276.
  63. Gingrich JA, Hen R (2001): Dissecting the role of the serotonin system in neuropsychiatric disorders using knockout mice. Psychopharmacology (Berl) 155:1–10.
  64. Girault JA, Greengard P (2004): The neurobiology of dopamine signaling. Arch Neurol 61:641–644.
  65. Goldman-Rakic PS (1996): The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Philo Trans R Soc Lond B Biol Sci 351:1445–1453.
  66. Goldman-Rakic PS (1998): The cortical dopamine system: role in memory and cognition. Adv Pharmacol 42:707–711.
  67. Goldman-Rakic PS, Lidow MS, Gallager DW (1990): Overlap of dopaminergic, adrenergic, and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10:2125–2138.
  68. Gospe SM Jr, Zhou SS (2000): Prenatal exposure to toluene results in abnormal neurogenesis and migration in rat somatosensory cortex. Pediatr Res 47:362–368.
  69. Gressens P, Kosofsky BE, Evrard P (1992): Cocaine-induced disturbances of corticogenesis in the developing murine brain. Neurosci Lett 140:113–116.
  70. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002): Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416:396–400.
  71. Guerriero RM, Rajadhyaksha A, Crozatier C, Giros B, Nosten-Bertrand M, Kosofsky BE (2005): Augmented constitutive CREB expression in the nucleus accumbens and striatum may contribute to the altered behavioral response to cocaine of adult mice exposed to cocaine in utero. Dev Neurosci 27:235–248.
  72. Guilarte TR, McGlothan JL, Degaonkar M, Chen MK, Barker PB, Syversen T, Schneider JS (2006): Evidence for cortical dysfunction and widespread manganese accumulation in the nonhuman primate brain following chronic manganese exposure: a 1H-MRS and MRI study. Toxicol Sci 94:351–358.
  73. Haber SN, Ryoo H, Cox C, Lu W (1995): Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362:400–410.
  74. Harden TK, Wolfe BB, Sporn JR, Perkins JP, Molinoff PB (1977): Ontogeny of beta-adrenergic receptors in rat cerebral cortex. Brain Res 125:99–108.
  75. Hartig PR (1994): Molecular pharmacology of serotonin receptors. EXS 71:93–102.
  76. Harvey JA (2004): Cocaine effects on the developing brain: current status. Neurosci Biobehav Rev 27:751–764.
  77. Hellendall RP, Schambra UB, Liu JP, Lauder JM (1993): Prenatal expression of 5-HT1C and 5-HT2 receptors in the rat central nervous system. Exp Neurol 120:186–201.
  78. Herlenius E, Lagercrantz H (2004): Development of neurotransmitter systems during critical periods. Exp Neurol 190(suppl 1):S8–S21.
  79. Hirshfeld DR, Rosenbaum JF, Biederman J, Bolduc EA, Faraone SV, Snidman N, Reznick JS, Kagan J (1992): Stable behavioral inhibition and its association with anxiety disorder. J Am Acad Child Adolesc Psychiatry 31:103–111.
  80. Holmes A, le Guisquet AM, Vogel E, Millstein RA, Leman S, Belzung C (2005): Early life genetic, epigenetic and environmental factors shaping emotionality in rodents. Neurosci Biobehav Rev 29:1335–1346.
  81. Hougaard KS, Hass U, Lund SP, Simonsen L (1999): Effects of prenatal exposure to toluene on postnatal development and behavior in rats. Neurotoxicol Teratol 21:241–250.
  82. Hoyer D, Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites: apparent absence of 5-HT1B recognition sites. Brain Res 376:85–96.
  83. Hsieh CT, Liang JS, Peng SS, Lee WT (2007): Seizure associated with total parenteral nutrition-related hypermanganesemia. Pediatr Neurol 36:181–183.
  84. Hyman SE, Malenka RC (2001): Addiction and the brain: the neurobiology of compulsion and its persistence. Nat Rev Neurosci 2:695–703.
  85. Jackson MB, Yakel JL (1995): The 5-HT3 receptor channel. Annu Rev Physiol 57:447–468.
  86. Jayanthi LD, Ramamoorthy S (2005): Regulation of monoamine transporters: influence of psychostimulants and therapeutic antidepressants. AAPS J 7:E728–E738.
  87. Jenkins AJ, Keenan RM, Henningfield JE, Cone EJ (2002): Correlation between pharmacological effects and plasma cocaine concentrations after smoked administration. J Anal Toxicol 26:382–392.
  88. Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S (2007): Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 11:241–260.
  89. Jones L, Fischer I, Levitt P (1996): Nonuniform alteration of dendritic development in the cerebral cortex following prenatal cocaine exposure. Cereb Cortex 6:431–445.
  90. Jones LB, Stanwood GD, Reinoso BS, Washington RA, Wang HY, Friedman E, Levitt P (2000): In utero cocaine-induced dysfunction of dopamine D1 receptor signaling and abnormal differentiation of cerebral cortical neurons. J Neurosci 20:4606–4614.
  91. Jung AB, Bennett JP Jr (1996): Development of striatal dopaminergic function. I. Pre- and postnatal development of mRNAs and binding sites for striatal D1 (D1a) and D2 (D2a) receptors. Brain Res Dev Brain Res 94:109–120.
  92. Kafritsa Y, Fell J, Long S, Bynevelt M, Taylor W, Milla P (1998): Long-term outcome of brain manganese deposition in patients on home parenteral nutrition. Arch Dis Child 79:263–265.
  93. Kagan J, Snidman N (1999): Early childhood predictors of adult anxiety disorders. Biol Psychiatry 46:1536–1541.
  94. Kagan J, Snidman N, Kahn V, Towsley S (2007): The preservation of two infant temperaments into adolescence. Monogr Soc Res Child Dev 72:1–75, vii, discussion 76–91.
  95. Kalivas PW, Volkow ND (2005): The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413.
  96. Karmel BZ, Gardner JM (1996): Prenatal cocaine exposure effects on arousal-modulated attention during the neonatal period. Dev Psychobiol 29:463–480.
  97. Kasirsky G (1971): Teratogenic effects of methamphetamine in mice and rabbits. J Am Osteopath Assoc 70:1119–1120.
  98. Kebabian JW, Calne DB (1979): Multiple receptors for dopamine. Nature 277:93–96.
  99. Kellendonk C, Simpson EH, Polan HJ, Malleret G, Vronskaya S, Winiger V, Moore H, Kandel ER (2006): Transient and selective overexpression of dopamine D2 receptors in the striatum causes persistent abnormalities in prefrontal cortex functioning. Neuron 49:603–615.
  100. Kim H, Lim SW, Kim S, Kim JW, Chang YH, Carroll BJ, Kim DK (2006): Monoamine transporter gene polymorphisms and antidepressant response in Koreans with late-life depression. JAMA 296:1609–1618.
  101. Kiyatkin EA (1995): Functional significance of mesolimbic dopamine. Neurosci Biobehav Rev 19:573–598.
  102. Koprich JB, Chen EY, Kanaan NM, Campbell NG, Kordower JH, Lipton JW (2003): Prenatal 3,4-methylenedioxymethamphetamine (ecstasy) alters exploratory behavior, reduces monoamine metabolism, and increases forebrain tyrosine hydroxylase fiber density of juvenile rats. Neurotoxicol Teratol 25:509–517.
  103. Kuchiiwa S, Cheng SB, Nagatomo I, Akasaki Y, Uchida M, Tominaga M, Hashiguchi W, Kuchiiwa T (2002): In utero and lactational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin decreases serotonin-immunoreactive neurons in raphe nuclei of male mouse offspring. Neurosci Lett 317:73–76.
  104. Lambe EK, Krimer LS, Goldman-Rakic PS (2000): Differential postnatal development of catecholamine and serotonin inputs to identified neurons in prefrontal cortex of rhesus monkey. J Neurosci 20:8780–8787.
  105. Lauder J, Bloom F (1974a): Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei, and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155:469–482.
  106. Lauder JM, Bloom FE (1974b): Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. I. Cell differentiation. J Comp Neurol 155:469–481.
  107. Lauder JM, Bloom FE (1975): Ontogeny of monoamine neurons in the locus coeruleus, raphe nuclei and substantia nigra of the rat. II. Synaptogenesis. J Comp Neurol 163:251–264.
  108. Laviola G, Gioiosa L, Adriani W, Palanza P (2005): D-amphetamine-related reinforcing effects are reduced in mice exposed prenatally to estrogenic endocrine disruptors. Brain Res Bull 65:235–240.
  109. Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, El Mestikawy S, Seif I, Gaspar P (1996): Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 17:823–835.
  110. Lee CT, Chen J, Hayashi T, Tsai SY, Sanchez JF, Errico SL, Amable R, Su TP, Lowe RH, Huestis MA, Shen J, Becker KG, Geller HM, Freed WJ (2008): A mechanism for the inhibition of neural progenitor cell proliferation by cocaine. PLoS Med 5:e117.
  111. Lee JW (2000): Manganese intoxication. Arch Neurol 57:597–599.
  112. Levin ED, Addy N, Baruah A, Elias A, Christopher NC, Seidler FJ, Slotkin TA (2002): Prenatal chlorpyrifos exposure in rats causes persistent behavioral alterations. Neurotoxicol Teratol 24:733–741.
  113. Levitt P, Moore RY (1978): Noradrenaline neuron innervation of the neocortex in the rat. Brain Res 139:219–231.
  114. Levitt P, Moore RY (1979): Development of the noradrenergic innervation of neocortex. Brain Res 162:243–259.
  115. Levitt P, Rakic P (1982): The time of genesis, embryonic origin and differentiation of the brain stem monoamine neurons in the rhesus monkey. Brain Res 256:35–57.
  116. Levitt P, Rakic P, Goldman-Rakic P (1984): Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227:23–36.
  117. Lidov HG, Molliver ME (1982): Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull 9:559–604.
  118. Lidow MS (1995a): D1- and D2 dopaminergic receptors in the developing cerebral cortex of macaque monkey: a film autoradiographic study. Neuroscience 65:439–452.
  119. Lidow MS (1995b): Prenatal cocaine exposure adversely affects development of the primate cerebral cortex. Synapse 21:332–341.
  120. Lidow MS (2003): Consequences of prenatal cocaine exposure in nonhuman primates. Brain Res Dev Brain Res 147:23–36.
  121. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991): Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40:657–671.
  122. Lidow MS, Song ZM (2001): Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons. J Comp Neurol 435:263–275.
  123. Lin L, Isacson O (2006): Axonal growth regulation of fetal and embryonic stem cell-derived dopaminergic neurons by Netrin-1 and Slits. Stem Cells 24:2504–2513.
  124. Linares TJ, Singer LT, Kirchner HL, Short EJ, Min MO, Hussey P, Minnes S (2006): Mental health outcomes of cocaine-exposed children at 6 years of age. J Pediatr Psychol 31:85–97.
  125. Lindvall O, Bjorkland A, Divac I (1978): Organization of catecholamine neurons projecting to the frontal cortex of the rat. Brain Res 142:1–24.
  126. Ljung K, Vahter M (2007): Time to re-evaluate the guideline value for manganese in drinking water? Environ Health Perspect 115:1533–1538.
  127. Llansola M, Erceg S, Monfort P, Montoliu C, Felipo V (2007): Prenatal exposure to polybrominated diphenylether 99 enhances the function of the glutamate-nitric oxide-cGMP pathway in brain in vivo and in cultured neurons. Eur J Neurosci 25:373–379.
  128. Lu C, Barr DB, Pearson MA, Waller LA (2008): Dietary intake and its contribution to longitudinal organophosphorus pesticide exposure in urban/suburban children. Environ Health Perspect 116:537–542.
  129. Lucki I (1998): The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44:151–162.
  130. Lyles J, Cadet JL (2003): Methylenedioxymethamphetamine (MDMA, ecstasy) neurotoxicity: cellular and molecular mechanisms. Brain Res Brain Res Rev 42:155–168.
  131. Lynd-Balta E, Haber SN (1994a): The organization of midbrain projections to the striatum in the primate: sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640.
  132. Lynd-Balta E, Haber SN (1994b): The organization of midbrain projections to the ventral striatum in the primate. Neuroscience 59:609–623.
  133. Malanga CJ, Kosofsky BE (2003): Does drug abuse beget drug abuse? Behavioral analysis of addiction liability in animal models of prenatal drug exposure. Brain Res Dev Brain Res 147:47–57.
  134. Malanga CJ, Riday TT, Carlezon WA Jr, Kosofsky BE (2008): Prenatal exposure to cocaine increases the rewarding potency of cocaine and selective dopaminergic agonists in adult mice. Biol Psychiatry 63:214–221.
  135. Maschi S, Clavenna A, Campi R, Schiavetti B, Bernat M, Bonati M (2008): Neonatal outcome following pregnancy exposure to antidepressants: a prospective controlled cohort study. BJOG 115:283–289.
  136. Mayes L, Snyder PJ, Langlois E, Hunter N (2007): Visuospatial working memory in school-aged children exposed in utero to cocaine. Child Neuropsychol 13:205–218.
  137. Mayes LC (2002): A behavioral teratogenic model of the impact of prenatal cocaine exposure on arousal regulatory systems. Neurotoxicol Teratol 24:385–395.
  138. Mayes LC, Cicchetti D, Acharyya S, Zhang H (2003): Developmental trajectories of cocaine-and-other-drug-exposed and non-cocaine-exposed children. J Dev Behav Pediatr 24:323–335.
  139. McCann D, Barrett A, Cooper A, Crumpler D, Dalen L, Grimshaw K, Kitchin E, Lok K, Porteous L, Prince E, Sonuga-Barke E, Warner JO, Stevenson J (2007): Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370:1560–1567.
  140. McElhatton PR, Bateman DN, Evans C, Pughe KR, Thomas SH (1999): Congenital anomalies after prenatal ecstasy exposure. Lancet 354:1441–1442.
  141. Melo P, Moreno VZ, Vazquez SP, Pinazo-Duran MD, Tavares MA (2006): Myelination changes in the rat optic nerve after prenatal exposure to methamphetamine. Brain Res 1106:21–29.
  142. Melo P, Pinazo-Duran MD, Salgado-Borges J, Tavares MA (2008): Correlation of axon size and myelin occupancy in rats prenatally exposed to methamphetamine. Brain Res 1222:61–68.
  143. Meyer A, Seidler FJ, Aldridge JE, Slotkin TA (2005): Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol Appl Pharmacol 203:154–166.
  144. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG (1998): Dopamine receptors: from structure to function. Physiol Rev 78:189–225.
  145. Miyagawa K, Narita M, Narita M, Niikura K, Akama H, Tsurukawa Y, Suzuki T (2007): Changes in central dopaminergic systems with the expression of Shh or GDNF in mice perinatally exposed to bisphenol-A. Nihon Shinkei Seishin Yakurigaku Zasshi 27:69–75.
  146. Moran-Gates T, Gan L, Park YS, Zhang K, Baldessarini RJ, Tarazi FI (2006): Repeated antipsychotic drug exposure in developing rats: dopamine receptor effects. Synapse 59:92–100.
  147. Moreno M, Canadas F, Cardona D, Sunol C, Campa L, Sanchez-Amate MC, Flores P, Sanchez-Santed F (2008): Long-term monoamine changes in the striatum and nucleus accumbens after acute chlorpyrifos exposure. Toxicol Lett 176:162–167.
  148. Morford LL, Inman-Wood SL, Gudelsky GA, Williams MT, Vorhees CV (2002): Impaired spatial and sequential learning in rats treated neonatally with D-fenfluramine. Eur J Neurosci 16:491–500.
  149. Morilak DA, Ciaranello RD (1993): Ontogeny of 5-hydroxytryptamine2 receptor immunoreactivity in the developing rat brain. Neuroscience 55:869–880.
  150. Morris MJ, Dausse JP, Devynck MA, Meyer P (1980): Ontogeny of alpha 1 and alpha 2-adrenoceptors in rat brain. Brain Res 190:268–271.
  151. Morrow BA, Elsworth JD, Roth RH (2002): Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats. Behav Brain Res 129:217–223.
  152. Moser VC (2007): Animal models of chronic pesticide neurotoxicity. Hum Exp Toxicol 26:321–331.
  153. Murphy DL, Lesch KP (2008): Targeting the murine serotonin transporter: insights into human neurobiology. Nat Rev Neurosci 9:85–96.
  154. Murphy EH, Fischer I, Friedman E, Grayson D, Jones L, Levitt P, O’Brien-Jenkins A, Wang HY, Wang XH (1997): Cocaine administration in pregnant rabbits alters cortical structure and function in their progeny in the absence of maternal seizures. Exp Brain Res 114:433–441.
  155. Nagatomo S, Umehara F, Hanada K, Nobuhara Y, Takenaga S, Arimura K, Osame M (1999): Manganese intoxication during total parenteral nutrition: report of two cases and review of the literature. J Neurol Sci 162:102–105.
  156. Nasif FJ, Cuadra GR, Ramirez OA (1999): Permanent alteration of central noradrenergic system by prenatally administered amphetamine. Brain Res Dev Brain Res 112:181–188.
  157. Nasuti C, Gabbianelli R, Falcioni ML, Di Stefano A, Sozio P, Cantalamessa F (2007): Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids. Toxicology 229:194–205.
  158. Nestler EJ (2001): Neurobiology: total recall – the memory of addiction. Science 292:2266–2267.
  159. Nora JJ, Trasler DG, Fraser FC (1965): Malformations in mice induced by dexamphetamine sulphate. Lancet ii:1021–1022.

    External Resources

  160. Normandin L, Panisset M, Zayed J (2002): Manganese neurotoxicity: behavioral, pathological, and biochemical effects following various routes of exposure. Rev Environ Health 17:189–217.
  161. Novikova SI, He F, Bai J, Cutrufello NJ, Lidow MS, Undieh AS (2008): Maternal cocaine administration in mice alters DNA methylation and gene expression in hippocampal neurons of neonatal and prepubertal offspring. PLoS ONE 3:e1919.
  162. Nowak P, Szczerbak G, Nitka D, Kostrzewa RM, Sitkiewicz T, Brus R (2008): Effect of prenatal lead exposure on nigrostriatal neurotransmission and hydroxyl radical formation in rat neostriatum: Dopaminergic-nitrergic interaction. Toxicology 246:83–89.
  163. Oberlander TF, Bonaguro RJ, Misri S, Papsdorf M, Ross CJ, Simpson EM (2008): Infant serotonin transporter (SLC6A4) promoter genotype is associated with adverse neonatal outcomes after prenatal exposure to serotonin reuptake inhibitor medications. Mol Psychiatry 13:65–73.
  164. Ohtani N, Goto T, Waeber C, Bhide PG (2003): Dopamine modulates cell cycle in the lateral ganglionic eminence. J Neurosci 23:2840–2850.
  165. Olivier B, Mos J, van Oorschot R, Hen R (1995): Serotonin receptors and animal models of aggressive behavior. Pharmacopsychiatry 28(suppl 2):80–90.
  166. Olney JW, Wozniak DF, Farber NB, Jevtovic-Todorovic V, Bittigau P, Ikonomidou C (2002): The enigma of fetal alcohol neurotoxicity. Ann Med 34:109–119.
  167. Olson L, Seiger A (1972): Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch 137:301–316.
  168. Olson L, Seiger A, Fuxe K (1972): Heterogeneity of striatal and limbic dopamine innervation: highly fluorescent islands in developing and adult rats. Brain Res 44:283–288.
  169. Pappas BA, Zhang D, Davidson CM, Crowder T, Park GA, Fortin T (1997): Perinatal manganese exposure: behavioral, neurochemical, and histopathological effects in the rat. Neurotoxicol Teratol 19:17–25.
  170. Parlaman JP, Thompson BL, Levitt P, Stanwood GD (2007): Pharmacokinetic profile of cocaine following intravenous administration in the female rabbit. Eur J Pharmacol 563:124–129.
  171. Pearson KH, Nonacs RM, Viguera AC, Heller VL, Petrillo LF, Brandes M, Hennen J, Cohen LS (2007): Birth outcomes following prenatal exposure to antidepressants. J Clin Psychiatry 68:1284–1289.
  172. Persico AM, Di Pino G, Levitt P (2006): Multiple receptors mediate the trophic effects of serotonin on ventroposterior thalamic neurons in vitro. Brain Res 1095:17–25.
  173. Piper BJ (2007): A developmental comparison of the neurobehavioral effects of ecstasy (MDMA). Neurotoxicol Teratol 29:288–300.
  174. Pittman RN, Minneman KP, Molinoff PB (1980): Ontogeny of beta 1- and beta 2-adrenergic receptors in rat cerebellum and cerebral cortex. Brain Res 188:357–368.
  175. Plessinger MA (1998): Prenatal exposure to amphetamines: risks and adverse outcomes in pregnancy. Obstet Gynecol Clin North Am 25:119–138.
  176. Pranzatelli MR (1993): Regional differences in the ontogeny of 5-hydroxytryptamine-1C binding sites in rat brain and spinal cord. Neurosci Lett 149:9–11.
  177. Rao PA, Molinoff PB, Joyce JN (1991): Ontogeny of dopamine D1 and D2 receptor subtypes in rat basal ganglia: a quantitative autoradiographic study. Dev Brain Res 60:161–177.
  178. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, Whitehead R, Tang D, Whyatt RW (2006): Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118:e1845–e1859.
  179. Reader TA, Dewar KM, Grondin L (1989a): Distribution of monoamines and metabolites in rabbit neostriatum, hippocampus and cortex. Brain Res Bull 23:237–247.
  180. Reader TA, Grondin L, Montreuil B, Dewar KM (1989b): Dopamine D1 receptors labelled with [3H]SCH23390 in rabbit cerebral cortex and neostriatum: equilibrium binding, kinetics and selectivity. Naunyn Schmiedebergs Arch Pharmacol 340:617–625.
  181. Rebsam A, Seif I, Gaspar P (2002): Refinement of thalamocortical arbors and emergence of barrel domains in the primary somatosensory cortex: a study of normal and monoamine oxidase a knock-out mice. J Neurosci 22:8541–8552.
  182. Reichel CM, Wacan JJ, Farley CM, Stanley BJ, Crawford CA, McDougall SA (2006): Postnatal manganese exposure attenuates cocaine-induced locomotor activity and reduces dopamine transporters in adult male rats. Neurotoxicol Teratol 28:323–332.
  183. Reinoso BS, Undie AS, Levitt P (1996): Dopamine receptors mediate differential morphological effects on cerebral cortical neurons in vitro. J Neurosci Res 43:439–453.
  184. Ren JQ, Malanga CJ, Tabit E, Kosofsky BE (2004): Neuropathological consequences of prenatal cocaine exposure in the mouse. Int J Dev Neurosci 22:309–320.
  185. Rhodes MC, Seidler FJ, Abdel-Rahman A, Tate CA, Nyska A, Rincavage HL, Slotkin TA (2004): Terbutaline is a developmental neurotoxicant: effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. J Pharmacol Exp Ther 308:529–537.
  186. Richardson GA, Conroy ML, Day NL (1996): Prenatal cocaine exposure: effects on the development of school-age children. Neurotoxicol Teratol 18:627–634.
  187. Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW (2006): Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson’s disease. FASEB J 20:1695–1697.
  188. Rocha BA, Mead AN, Kosofsky BE (2002): Increased vulnerability to self-administer cocaine in mice prenatally exposed to cocaine. Psychopharmacology (Berl) 163:221–229.
  189. Rodier PM (2004): Environmental causes of central nervous system maldevelopment. Pediatrics 113:1076–1083.
  190. Roegge CS, Timofeeva OA, Seidler FJ, Slotkin TA, Levin ED (2008): Developmental diazinon neurotoxicity in rats: later effects on emotional response. Brain Res Bull 75:166–172.
  191. Romano AG, Harvey JA (1996): Elicitation and modification of the rabbit’s nictitating membrane reflex following prenatal exposure to cocaine. Pharmacol Biochem Behav 53:857–862.
  192. Rosenbaum JF, Biederman J, Bolduc-Murphy EA, Faraone SV, Chaloff J, Hirshfeld DR, Kagan J (1993): Behavioral inhibition in childhood: a risk factor for anxiety disorders. Harv Rev Psychiatry 1:2–16.
  193. Rosengarten H, Friedhoff AJ (1979): Enduring changes in dopamine receptor cells of pups from drug administration to pregnant and nursing rats. Science 203:1133–1135.
  194. Rosengarten H, Quartermain D (2002): Effect of prenatal administration of haloperidol, risperidone, quetiapine and olanzapine on spatial learning and retention in adult rats. Pharmacol Biochem Behav 72:575–579.
  195. Sales N, Martres MP, Bouthenet ML, Schwartz JC (1989): Ontogeny of dopaminergic D-2 receptors in the rat nervous system: characterization and detailed autoradiographic mapping with [125I]iodosulpride. Neuroscience 28:673–700.
  196. Scalzo FM, Ali SF, Holson RR, Williams RL (1993): Haloperidol effects on the developing dopamine system: conflicting results and implications for neurobehavioral teratology research. Ann Ist Super Sanita 29:139–146.
  197. Scalzo FM, Spear LP (1985): Chronic haloperidol during development attenuates dopamine autoreceptor function in striatal and mesolimbic brain regions of young and older adult rats. Psychopharmacology (Berl) 85:271–276.
  198. Schaefer TL, Skelton MR, Herring NR, Gudelsky GA, Vorhees CV, Williams MT (2008): Short- and long-term effects of (+)-methamphetamine and (+/–)-3,4-methylenedioxymethamphetamine on monoamine and corticosterone levels in the neonatal rat following multiple days of treatment. J Neurochem 104:1674–1685.
  199. Schambra UB, Duncan GE, Breese GR, Fornaretto MG, Caron MG, Fremeau RT Jr (1994): Ontogeny of D1A and D2 dopamine receptor subtypes in rat brain using in situ hybridization and receptor binding. Neuroscience 62:65–85.
  200. Schwartz CE, Snidman N, Kagan J (1999): Adolescent social anxiety as an outcome of inhibited temperament in childhood. J Am Acad Child Adolesc Psychiatry 38:1008–1015.
  201. Segal M, Pickel V, Bloom F (1973): The projections of the nucleus locus coeruleus: an autoradiographic study. Life Sci 13:817–821.
  202. Simansky KJ, Baker G, Kachelries WJ, Hood H, Romano AG, Harvey JA (1998): Prenatal exposure to cocaine reduces dopaminergic D1-mediated motor function but spares the enhancement of learning by amphetamine in rabbits. Ann NY Acad Sci 846:375–378.
  203. Simansky KJ, Kachelries WJ (1996): Prenatal exposure to cocaine selectively disrupts motor responding to D-amphetamine in young and mature rabbits. Neuropharmacology 35:71–78.
  204. Singer LT, Minnes S, Short E, Arendt R, Farkas K, Lewis B, Klein N, Russ S, Min MO, Kirchner HL (2004): Cognitive outcomes of preschool children with prenatal cocaine exposure. JAMA 291:2448–2456.
  205. Singer LT, Nelson S, Short E, Min MO, Lewis B, Russ S, Minnes S (2008): Prenatal cocaine exposure: drug and environmental effects at 9 years. J Pediatr 153:105–111.
  206. Singh KP, Singh M (2001): Effect of single prenatal haloperidol exposure on hippocampus and striatum of developing rat brain. Indian J Exp Biol 39:223–229.
  207. Singh KP, Singh M (2002): Effect of prenatal haloperidol exposure on behavioral alterations in rats. Neurotoxicol Teratol 24:497–502.
  208. Skelton MR, Williams MT, Vorhees CV (2008): Developmental effects of 3,4-methylenedioxymethamphetamine: a review. Behav Pharmacol 19:91–111.
  209. Slamberova R, Bernaskova K, Matejovska I, Schutova B (2008): Does prenatal methamphetamine exposure affect seizure susceptibility in adult rats with acute administration of the same drug? Epilepsy Res 78:33–39.
  210. Slotkin TA (1998): Fetal nicotine or cocaine exposure: which one is worse? J Pharmacol Exp Ther 285:931–945.
  211. Slotkin TA (2004): Cholinergic systems in brain development and disruption by neurotoxicants: nicotine, environmental tobacco smoke, organophosphates. Toxicol Appl Pharmacol 198:132–151.
  212. Slotkin TA, Kudlacz EM, Lappi SE, Tayyeb MI, Seidler FJ (1990): Fetal terbutaline exposure causes selective postnatal increases in cerebellar alpha-adrenergic receptor binding. Life Sci 47:2051–2057.
  213. Slotkin TA, Levin ED, Seidler FJ (2006): Comparative developmental neurotoxicity of organophosphate insecticides: effects on brain development are separable from systemic toxicity. Environ Health Perspect 114:746–751.
  214. Slotkin TA, Seidler FJ (2007a): Developmental exposure to terbutaline and chlorpyrifos, separately or sequentially, elicits presynaptic serotonergic hyperactivity in juvenile and adolescent rats. Brain Res Bull 73:301–309.
  215. Slotkin TA, Seidler FJ (2007b): Prenatal chlorpyrifos exposure elicits presynaptic serotonergic and dopaminergic hyperactivity at adolescence: critical periods for regional and sex-selective effects. Reprod Toxicol 23:421–427.
  216. Slotkin TA, Tate CA, Cousins MM, Seidler FJ (2001): Beta-adrenoceptor signaling in the developing brain: sensitization or desensitization in response to terbutaline. Brain Res Dev Brain Res 131:113–125.
  217. Smith L, Yonekura ML, Wallace T, Berman N, Kuo J, Berkowitz C (2003): Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J Dev Behav Pediatr 24:17–23.
  218. Smith LM, Chang L, Yonekura ML, Grob C, Osborn D, Ernst T (2001): Brain proton magnetic resonance spectroscopy in children exposed to methamphetamine in utero. Neurology 57:255–260.
  219. Smith LM, LaGasse LL, Derauf C, Grant P, Shah R, Arria A, Huestis M, Haning W, Strauss A, Della Grotta S, Liu J, Lester BM (2006): The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics 118:1149–1156.
  220. Smith LM, Lagasse LL, Derauf C, Grant P, Shah R, Arria A, Huestis M, Haning W, Strauss A, Grotta SD, Fallone M, Liu J, Lester BM (2008): Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol Teratol 30:20–28.
  221. Song ZM, Undie AS, Koh PO, Fang YY, Zhang L, Dracheva S, Sealfon SC, Lidow MS (2002): D1 dopamine receptor regulation of microtubule-associated protein-2 phosphorylation in developing cerebral cortical neurons. J Neurosci 22:6092–6105.
  222. Stanwood GD, Levitt P (2001): The effects of cocaine on the developing nervous system; in Nelson CA, Luciana M (eds): Handbook of Developmental Cognitive Neuroscience. MIT Press, pp 519–536.
  223. Stanwood GD, Levitt P (2003): Repeated i.v. cocaine exposure produces long-lasting behavioral sensitization in pregnant adults, but behavioral tolerance in their offspring. Neuroscience 122:579–583.
  224. Stanwood GD, Levitt P (2004): Drug exposure early in life: functional repercussions of changing neuropharmacology during sensitive periods of brain development. Curr Opin Pharmacol 4:65–71.
  225. Stanwood GD, Levitt P (2007): Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution. J Neurosci 27:152–157.
  226. Stanwood GD, Parlaman JP, Levitt P (2005): Anatomical abnormalities in dopaminoceptive regions of the cerebral cortex of dopamine D(1) receptor mutant mice. J Comp Neurol 487:270–282.
  227. Stanwood GD, Parlaman JP, Levitt P (2006): Genetic or pharmacological inactivation of the dopamine D1 receptor differentially alters the expression of regulator of G-protein signalling (Rgs) transcripts. Eur J Neurosci 24:806–818.
  228. Stanwood GD, Washington RA, Levitt P (2001a): Identification of a sensitive period of prenatal cocaine exposure that alters the development of the anterior cingulate cortex. Cereb Cortex 11:430–440.
  229. Stanwood GD, Washington RA, Shumsky JS, Levitt P (2001b): Prenatal cocaine exposure produces consistent developmental alterations in dopamine-rich regions of the cerebral cortex. Neuroscience 106:5–14.
  230. Sundstrom E, Kolare S, Souverbie F, Samuelsson EB, Pschera H, Lunell NO, Seiger A (1993): Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Brain Res Dev Brain Res 75:1–12.
  231. Suzuki T, Mizuo K, Miyagawa K, Narita M (2005): Exposure to bisphenol-A affects the rewarding system in mice (in Japanese). Nihon Shinkei Seishin Yakurigaku Zasshi 25:125–128.
  232. Suzuki T, Mizuo K, Nakazawa H, Funae Y, Fushiki S, Fukushima S, Shirai T, Narita M (2003): Prenatal and neonatal exposure to bisphenol-A enhances the central dopamine D1 receptor-mediated action in mice: enhancement of the methamphetamine-induced abuse state. Neuroscience 117:639–644.
  233. Szczerbak G, Nowak P, Kostrzewa RM, Brus R (2007): Maternal lead exposure produces long-term enhancement of dopaminergic reactivity in rat offspring. Neurochem Res 32:1791–1798.
  234. Tavares MA, Silva MC, Silva-Araujo A, Xavier MR, Ali SF (1996): Effects of prenatal exposure to amphetamine in the medial prefrontal cortex of the rat. Int J Dev Neurosci 14:585–596.
  235. Thompson B, Stanwood G, Levitt P (2005a): Double dissociation of the reinforcing properties of cocaine. In: Society For Neuroscience, Washington, DC.
  236. Thompson BL, Levitt P, Stanwood GD (2005b): Prenatal cocaine exposure specifically alters spontaneous alternation behavior. Behav Brain Res 164:107–116.
  237. Todd RD (1992): Neural development is regulated by classical neurotransmitters: dopamine D2 receptor stimulation enhances neurite outgrowth. Biol Psychiatry 31:794–807.
  238. Tran TT, Chowanadisai W, Crinella FM, Chicz-DeMet A, Lonnerdal B (2002): Effect of high dietary manganese intake of neonatal rats on tissue mineral accumulation, striatal dopamine levels, and neurodevelopmental status. Neurotoxicology 23:635–643.
  239. Vorhees CV, Inman-Wood SL, Morford LL, Broening HW, Fukumura M, Moran MS (2000): Adult learning deficits after neonatal exposure to D-methamphetamine: selective effects on spatial navigation and memory. J Neurosci 20:4732–4739.
  240. Vorhees CV, Skelton MR, Williams MT (2007): Age-dependent effects of neonatal methamphetamine exposure on spatial learning. Behav Pharmacol 18:549–562.
  241. Walderhaug E, Magnusson A, Neumeister A, Lappalainen J, Lunde H, Refsum H, Landro NI (2007): Interactive effects of sex and 5-HTTLPR on mood and impulsivity during tryptophan depletion in healthy people. Biol Psychiatry 62:593–599.
  242. Wang HY, Runyan S, Yadin E, Friedman E (1995a): Prenatal exposure to cocaine selectively reduces D1 dopamine receptor-mediated activation of striatal Gs proteins. J Pharmacol Exp Ther 273:492–498.
  243. Wang JH, Yang JZ, Wilson FA, Ma YY (2006): Differently lasting effects of prenatal and postnatal chronic clozapine/haloperidol on activity and memory in mouse offspring. Pharmacol Biochem Behav 84:468–478.
  244. Wang XH, Levitt P, Grayson DR, Murphy EH (1995b): Intrauterine cocaine exposure of rabbits: persistent elevation of GABA-immunoreactive neurons in anterior cingulate cortex but not visual cortex. Brain Res 689:32–46.
  245. Wang XH, Levitt P, O’Brien-Jenkins A, Murphy EH (1996): Normal development of tyrosine hydroxylase and serotonin immunoreactive fibers innervating anterior cingulate cortex and visual cortex in rabbits exposed prenatally to cocaine. Brain Res 715:221–224.

    External Resources