Microbial Pathogenomics

Editor(s): de Reuse H. (Paris) 
Bereswill S. (Berlin) 
Table of Contents
Vol. 6, No. , 2009
Section title: Paper
de Reuse H, Bereswill S (eds): Microbial Pathogenomics. Genome Dyn. Basel, Karger, 2009, vol 6, pp 35–47

The Bacterial Pan-Genome and Reverse Vaccinology

Tettelin H.
Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Md., USA

Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in


The whole genome sequence of most human bacterial pathogens is available and the advent of next-generation sequencing technologies will result in a large number of sequenced isolates per pathogenic species. The study of multiple genome sequences of a given bacterium provides insights into its evolution, pathogenic potential and diversity. The pathogen’s pan-genome, defined as the sum of the core genome shared by all sequenced strains and the dispensable genome present only in a subset of the isolates, can be analyzed to assess the size and diversity of the gene repertoire that the species has access to. This information is then used to better inform the reverse vaccinology approach whereby vaccine candidates are identified and prioritized in silico based on genomic data. Bioinformatics integration of genome sequence data with functional genomics results and clinical meta-data is essential to maximize the use of this large amount of information to answer biologically relevant questions.

Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.


  1. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, et al: Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995;269:496-512
  2. Shendure J, Ji H: Next-generation DNA sequencing. Nat Biotechnol 2008;26:1135-1145
  3. Perna NT, Plunkett G, 3rd, Burland V, Mau B, Glasner JD, et al: Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 2001;409:529-533
  4. Welch RA, Burland V, Plunkett G, 3rd, Redford P, Roesch P, et al: Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc Natl Acad Sci USA 2002;99:17020-17024
  5. Beres SB, Sylva GL, Sturdevant DE, Granville CN, Liu M, et al: Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc Natl Acad Sci USA 2004;101:11833-11838
  6. Brochet M, Couve E, Glaser P, Guedon G, Payot S: Integrative conjugative elements and related elements are major contributors to the genome diversity of Streptococcus agalactiae. J Bacteriol 2008;190:6913-6917
  7. Ben Zakour NL, Sturdevant DE, Even S, Guinane CM, Barbey C, et al: Genome-wide analysis of ruminant Staphylococcus aureus reveals diversification of the core genome. J Bacteriol 2008;190:6302-6317
  8. Lan R, Reeves PR: Intraspecies variation in bacterial genomes: the need for a species genome concept. Trends Microbiol 2000;8:396-401
  9. Torres J, Backert S: Pathogenesis of Helicobacter pylori infection. Helicobacter 2008;13:(suppl 1)13-17
  10. Barocchi MA, Ries J, Zogaj X, Hemsley C, Albiger B, et al: A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci USA 2006;103:2857-2862
  11. Bagnoli F, Moschioni M, Donati C, Dimitrovska V, Ferlenghi I, et al: A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J Bacteriol 2008;190:5480-5492
  12. Rappuoli R: Reverse vaccinology. Curr Opin Microbiol 2000;3:445-450
  13. Plotkin SA: Six revolutions in vaccinology. Pediatr Infect Dis J 2005;24:1-9
  14. Aakra A, Nyquist OL, Snipen L, Reiersen TS, Nes IF: Survey of genomic diversity among Enterococcus faecalis strains by microarray-based comparative genomic hybridization. Appl Environ Microbiol 2007;73:2207-2217
  15. Hotopp JC, Grifantini R, Kumar N, Tzeng YL, Fouts D, et al: Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes. Microbiology 2006;152:3733-3749
  16. Earl AM, Losick R, Kolter R: Bacillus subtilis genome diversity. J Bacteriol 2007;189:1163-1170
  17. Hu G, Liu I, Sham A, Stajich JE, Dietrich FS, Kronstad JW: Comparative hybridization reveals extensive genome variation in the AIDS-associated pathogen Cryptococcus neoformans. Genome Biol 2008;9:R41
  18. Lindroos HL, Mira A, Repsilber D, Vinnere O, Naslund K, et al: Characterization of the genome composition of Bartonella koehlerae by microarray comparative genomic hybridization profiling. J Bacteriol 2005;187:6155-6165
  19. Parker CT, Quinones B, Miller WG, Horn ST, Mandrell RE: Comparative genomic analysis of Campylobacter jejuni strains reveals diversity due to genomic elements similar to those present in C. jejuni strain RM1221. J Clin Microbiol 2006;44:4125-4135
  20. Peng J, Zhang X, Yang J, Wang J, Yang E, et al: The use of comparative genomic hybridization to characterize genome dynamics and diversity among the serotypes of Shigella. BMC Genomics 2006;7:218
  21. Salama NR, Gonzalez-Valencia G, Deatherage B, Aviles-Jimenez F, Atherton JC, et al: Genetic analysis of Helicobacter pylori strain populations colonizing the stomach at different times post infection. J Bacteriol 2007;189:3834-3845
  22. Silva NA, McCluskey J, Jefferies JM, Hinds J, Smith A, et al: Genomic diversity between strains of the same serotype and multilocus sequence type among pneumococcal clinical isolates. Infect Immun 2006;74:3513-3518
  23. Taboada EN, Acedillo RR, Carrillo CD, Findlay WA, Medeiros DT, et al: Large-scale comparative genomics meta-analysis of Campylobacter jejuni isolates reveals low level of genome plasticity. J Clin Microbiol 2004;42:4566-4576
  24. Zhang Y, Laing C, Steele M, Ziebell K, Johnson R, et al: Genome evolution in major Escherichia coli O157:H7 lineages. BMC Genomics 2007;8:121
  25. Farley MM, Harvey RC, Stull T, Smith JD, Schuchat A, et al: A population-based assessment of invasive disease due to group B Streptococcus in nonpregnant adults [see comments]. N Engl J Med 1993;328:1807-1811
  26. Doran KS, Nizet V: Molecular pathogenesis of neonatal group B streptococcal infection: no longer in its infancy. Mol Microbiol 2004;54:23-31
  27. Schuchat A, Wenger JD: Epidemiology of group B streptococcal disease. Risk factors, prevention strategies, and vaccine development. Epidemiol Rev 1994;16:374-402
  28. Tettelin H, Masignani V, Cieslewicz MJ, Eisen JA, Peterson S, et al: Complete genome sequence and comparative genomic analysis of an emerging human pathogen, serotype V Streptococcus agalactiae. Proc Natl Acad Sci USA 2002;99:12391-12396
  29. Glaser P, Rusniok C, Buchrieser C, Chevalier F, Frangeul L, et al: Genome sequence of Streptococcus agalactiae, a pathogen causing invasive neonatal disease. Mol Microbiol 2002;45:1499-1513
  30. Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, et al: Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: Implications for the microbial ‘pan-genome’. Proc Natl Acad Sci USA 2005;102:13950-13955
  31. Tettelin H, Riley D, Cattuto C, Medini D: Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 2008;11:472-477
  32. Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R: The microbial pan-genome. Curr Opin Genet Dev 2005;15:589-594
  33. Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, et al: Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 2007;189:8186-8195
  34. Hogg JS, Hu FZ, Janto B, Boissy R, Hayes J, et al: Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 2007;8:R103
  35. Shen K, Antalis P, Gladitz J, Sayeed S, Ahmed A, et al: Identification, distribution, and expression of novel genes in 10 clinical isolates of nontypeable Haemophilus influenzae. Infect Immun 2005;73:3479-3491
  36. Coombs A: The sequencing shakeup. Nat Biotechnol 2008;26:1109-1112
  37. Tettelin H, Saunders NJ, Heidelberg J, Jeffries AC, Nelson KE, et al: Complete genome sequence of Neisseria meningitidis serogroup B strain MC58. Science 2000;287:1809-1815
  38. Bentley SD, Vernikos GS, Snyder LA, Churcher C, Arrowsmith C, et al: Meningococcal genetic variation mechanisms viewed through comparative analysis of serogroup C strain FAM18. PLoS Genet 2007;3:e23
  39. Rappuoli R, Del Giudice G: Identification of vaccine targets. (eds) Paoletti LC, McInnes PM: Vaccines: From Concept to Clinic Boca Raton, CRC Press, 1999;1-17
  40. Pizza M, Scarlato V, Masignani V, Giuliani MM, Arico B, et al: Identification of vaccine candidates against serogroup B meningococcus by whole-genome sequencing. Science 2000;287:1816-1820
  41. Tettelin H, Feldblyum TV: Genome sequencing and analysis. (eds) Grandi G: Genomics, Proteomics and Vaccines London, John Wiley and Sons Ltd, 2004;45-73
  42. Serruto D, Rappuoli R, Pizza M, Meningococcus B: from genome to vaccine. (eds) Grandi G: Genomics, Proteomics and Vaccines London, John Wiley and Sons Ltd, 2004;185-204
  43. Giuliani MM, Adu-Bobie J, Comanducci M, Arico B, Savino S, et al: A universal vaccine for serogroup B meningococcus. Proc Natl Acad Sci USA 2006;103:10834-10839
  44. Nicholls H: In silico vaccine. Nat Biotechnol 2008;26:597
  45. Maione D, Margarit I, Rinaudo CD, Masignani V, Mora M, et al: Identification of a universal group B streptococcus vaccine by multiple genome screen. Science 2005;309:148-150
  46. Brodeur BR, Boyer M, Charlebois I, Hamel J, Couture F, et al: Identification of group B streptococcal Sip protein, which elicits cross-protective immunity. Infect Immun 2000;68:5610-5618
  47. Waldemarsson J, Areschoug T, Lindahl G, Johnsson E: The streptococcal Blr and Slr proteins define a family of surface proteins with leucine-rich repeats: camouflaging by other surface structures. J Bacteriol 2006;188:378-388
  48. Graveley BR: Molecular biology: power sequencing. Nature 2008;453:1197-1198
  49. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, et al: MaGe: a microbial genome annotation system supported by synteny results. Nucleic Acids Res 2006;34:53-65
  50. Fox JA, McMillan S, Ouellette BF: Conducting research on the web: 2007 update for the bioinformatics links directory. Nucleic Acids Res 2007;35:3-5
  51. De Groot AS, Rappuoli R: Genome-derived vaccines. Expert Rev Vaccines 2004;3:59-76
  52. Serruto D, Rappuoli R: Post-genomic vaccine development. FEBS Lett 2006;580:2985-2992
  53. Yang HL, Zhu YZ, Qin JH, He P, Jiang XC, et al: In silico and microarray-based genomic approaches to identifying potential vaccine candidates against Leptospira interrogans. BMC Genomics 2006;7:293
  54. Graham SP, Honda Y, Pelle R, Mwangi DM, Glew EJ, et al: A novel strategy for the identification of antigens that are recognised by bovine MHC class I restricted cytotoxic T cells in a protozoan infection using reverse vaccinology. Immunome Res 2007;3:2
  55. Liu L, Cheng G, Wang C, Pan X, Cong Y, et al: Identification and experimental verification of protective antigens against Streptococcus suis serotype 2 based on genome sequence analysis. Curr Microbiol 2009;58:11-17
  56. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI: The human microbiome project. Nature 2007;449:804-810
  57. Walker A, Parkhill J: Single-cell genomics. Nat Rev Microbiol 2008;6:176-177
  58. Lasken RS: Single-cell genomic sequencing using Multiple Displacement Amplification. Curr Opin Microbiol 2007;10:510-516

Pay-per-View Options
Direct payment This item at the regular price: USD 33.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 23.00