Journal Mobile Options
Table of Contents
Vol. 122, No. 1, 2000
Issue release date: May 2000
Section title: Original Paper
Int Arch Allergy Immunol 2000;122:20–32
(DOI:10.1159/000024355)

Lipid Transfer Protein: A Pan-Allergen in Plant-Derived Foods That Is Highly Resistant to Pepsin Digestion

Asero R. · Mistrello G. · Roncarolo D. · de Vries S.C. · Gautier M.-F. · Ciurana C.L.F. · Verbeek E. · Mohammadi T. · Knul-Brettlova V. · Akkerdaas J.H. · Bulder I. · Aalberse R.C. · van Ree R.
aAmbulatorio di Allergologia, Ospedale Caduti Bollatesi, Bollate, bLofarma SpA, Milan, Italy; cDepartment of Molecular Biology, Agricultural University of Wageningen, The Netherlands; dUnité de Biochimie et Biologie Moléculaire des Céréales, INRA, Montpellier, France; eDepartment of Allergy, CLB and Laboratory for Experimental and Clinical Immunology, Academic Medical Centre, University of Amsterdam, fPrinsengracht Hospital, Department of Allergology, Amsterdam, The Netherlands

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restriction apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 5/19/2000

Number of Print Pages: 13
Number of Figures: 6
Number of Tables: 3

ISSN: 1018-2438 (Print)
eISSN: 1423-0097 (Online)

For additional information: http://www.karger.com/IAA

Abstract

Background: Lipid transfer proteins (LTPs) are small molecules of approximately 10 kD that demonstrate high stability. They have recently been identified as allergens in the Rosaceae subfamilies of the Prunoideae (peach, apricot, plum) and of the Pomoideae (apple). They belong to a family of structurally highly conserved proteins that are also present in non-Rosaceae vegetable foods. Objective: The aim of this study was to investigate the cross-reactivity to non-Rosaceae LTPs, and to study the role of protein stability in allergenicity. Methods: Thirty-eight patients with a positive SPT to Rosaceae fruit extracts enriched for LTP were characterized by interview and SPT. To investigate IgE cross-reactivity between Rosaceae and non-Rosaceae LTPs, RAST and RAST inhibition as well as ELISA and ELISA inhibition were performed, using whole food extracts and purified LTPs. Both purified natural LTPs (peach, carrot and broccoli) and Pichia pastoris recombinant LTPs (carrot and wheat) were included. Pepsin digestion was used to address the role of stability in the allergenicity of LTPs. Results: IgE antibodies to Rosaceae LTPs reacted to a broad range of vegetable foods, including Gramineae (cereals), Leguminosae (peanut), Juglandaceae (walnut), Anacardiaceae (pistachio), Brassicaceae (broccoli), Umbelliferae (carrot, celery), Solanaceae (tomato), Cucurbitaceae (melon), and Actinidiaceae (kiwi). Binding and inhibition studies with purified natural and recombinant LTPs confirmed their role in this cross-reactivity. Many of these cross-reactivities were accompanied by clinical food allergy, frequently including systemic reactions. Antibody binding to LTP was shown to be resistant to pepsin treatment of whole extract or purified LTP. Conclusion: LTP is a pan-allergen with a degree of cross-reactivity comparable to profilin. Due to its extreme resistance to pepsin digestion, LTP is a potentially severe food allergen.


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 5/19/2000

Number of Print Pages: 13
Number of Figures: 6
Number of Tables: 3

ISSN: 1018-2438 (Print)
eISSN: 1423-0097 (Online)

For additional information: http://www.karger.com/IAA


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.