Journal Mobile Options
Table of Contents
Vol. 88, No. 1, 2010
Issue release date: January 2010
Section title: Clinical Study
Stereotact Funct Neurosurg 2010;88:16–23
(DOI:10.1159/000260075)

Construction of Relational Topographies from the Quantitative Measurements of Functional Deep Brain Stimulation Using a ‘Roving Window’ Interpolation Algorithm

Shenai M.B. · Walker H. · Guthrie S. · Watts R. · Guthrie B.L.
aDivision of Neurosurgery and bDepartment of Neurology, The University of Alabama at Birmingham, Birmingham, Ala., USA

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 38.00
Account: USD 26.50

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restriction apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Clinical Study

Received: 10/2/2008
Accepted: 8/30/2009
Published online: 11/20/2009

Number of Print Pages: 8
Number of Figures: 5
Number of Tables: 1

ISSN: 1011-6125 (Print)
eISSN: 1423-0372 (Online)

For additional information: http://www.karger.com/SFN

Abstract

The delivery of stimulus by a deep brain stimulation (DBS) contact electrode at a particular location may lead to a quantifiable physiologic effect, both intraoperatively and postoperatively. Consequently, measured data values can be attributed to discrete scattered points in neuroanatomic space, allowing for interpolative techniques to generate a topographic map of spatial patterns. Ultimately, by relating the topographies of various intraoperative measurements to the postoperative counterparts and neuroanatomic atlases, outcome-guided adjustments to electrode position can be pursued intraoperatively. In this study, 52 Parkinson’s disease patients were tested with a postoperative trial of stimulation and thresholds were recorded for motor adverse effects. A ‘roving window’ interpolation algorithm was adapted to generate a topographic map of voltage threshold along selected axial, coronal and sagittal planes. By developing these relational topographies for a variety of intraoperative and postoperative effects, a multivariable approach towards DBS optimization emerges.


Article / Publication Details

First-Page Preview
Abstract of Clinical Study

Received: 10/2/2008
Accepted: 8/30/2009
Published online: 11/20/2009

Number of Print Pages: 8
Number of Figures: 5
Number of Tables: 1

ISSN: 1011-6125 (Print)
eISSN: 1423-0372 (Online)

For additional information: http://www.karger.com/SFN


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.