Table of Contents
To view the fulltext, log-in or choose pay-per-view options:
Get Access

The Role of Cytokines in the Neuropathology of Stroke and Neurotrauma

Feuerstein G.Z. · Wang X. · Barone F.C.
Department of Cardiovascular Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pa., USA Neuroimmunomodulation 1998;5:143–159 (DOI:10.1159/000026331)


Accumulating evidence during the last decade has shown that the CNS can mount a well-defined inflammatory reaction to a variety of insults including trauma, ischemia, transplantation, viral infections as well as neurodegeneration. Many aspects of this centrally derived inflammatory response parallel to some extent the nature of such a reaction in the periphery. Through the recent application of molecular genetic techniques including PCR, utilization of cDNA probes in conjuncture with the availability of highly specific antibodies, new concepts are rapidly emerging as to the molecular mechanisms associated with the development of brain injury. In particular, the importance of cytokines, especially TNFα and IL-1β, is emphasized in the propagation and maintenance of a CNS inflammatory response. This review summarizes evidence in support of a case for ischemia and trauma eliciting an inflammatory condition in the injured brain. The inflammatory condition consists of cells (neutrophils early after the onset of brain injury and subsequently monocyte infiltration) and mediators (cytokines, chemokines and adhesion molecules). It is clear that de novo up-regulation of pro-inflammatory cytokines, chemokines and endothelial-leukocyte adhesion molecules in the brain occurs soon following focal ischemia and trauma and at a time when the tissue injury is evolving. The significance of the inflammatory response and its contribution to brain injury are now becoming better understood. Evidence has emerged in support of the role of cytokines in driving the inflammatory response and that this process is causally related to the degree of brain injury. Evidence reviewed includes: (1) the capacity of specific cytokines to exacerbate brain damage; (2) the capacity of specific cytokine blockade to reduce ischemic brain damage; (3) depletion of circulating neutrophils reduces ischemic brain injury, and (4) antagonists of the endothelial-leukocyte adhesion interactions (e.g. anti-ICAM-1) reduce ischemic brain injury. Targeting the cytokines that drive the brain inflammatory response to injury provides opportunities to intervene with novel therapeutics in stroke and neurotrauma.


Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50