Journal Mobile Options
Table of Contents
Vol. 40, No. 1, 1999
Issue release date: July 1999
Neuropsychobiology 1999;40:21–32
(DOI:10.1159/000026593)

Schizophrenia – A Disturbance of Signal Interaction between the Entorhinal Cortex and the Dentate Gyrus? The Contribution of Experimental Dibenamine Psychosis to the Pathogenesis of Schizophrenia: A Hypothesis

Arnold O.H.
Universitäts-Klinik für Psychiatrie, Wien, Österreich

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

In addition to the existence of complex memory (similar to the implicit nondeclarative memory of Squire), the existence of a phylogenetically old apparatus of a memory of situations (SMA) is supposed, which is to some extent comparable with the declarative memory of Squire. During actual sensory information the SMA generates a general frame and forms a general ‘mark’, indicating whether a given information has its origin inside or outside the body, and whether it is new or known. The procedure of this marking process can be explained as the time-depending arrest of a copy of the actual original information-transporting signal ‘shower’; this copy must last until the feedback from thalamocortical centers indicates the termination of the processing of the original signal showers. The arrest of the shower copies is the performance of neuronal networks of the entorhinal cortex (EC) and the gyrus dentatus (GD). The psychopathological and biochemical analyses of experimental dibenamine psychosis show a different effect of dibenamine on the noradrenaline (NA) receptors of the EC and GD, respectively: these effects are responsible for the repeated perception cycles of a single situation. N,N-Dibencylamine blocks the postsynaptic α1-receptors of the EC without influencing the β-receptors of the GD. Thus the interaction between EC and GD is changed: instead of new scenes, perceptions that have just been experienced get repeated presence and the quality of familiarity. The prolonged arrest of shower copies simultaneously blocks the entrance of new signal showers from the EC to the GD. No information-transporting signal showers can come in as long as the arrest lasts. In case of a disturbance in NA-dependent actions within the EC and the GD, the duration of arrest of information-transporting signal showers is shortened. Thus the formal frame of experience receives the quality of novelty instead of familiarity, and in addition the qualities of uncertainty, vagueness, and alienity. These very changes in perception and experience represent the basic disturbance of schizophrenia. All the symptoms of schizophrenia may be explained by this basic disturbance. The analysis of biochemical aspects turns attention to the energetic situation of NA and N-methly-d-aspartate systems. These considerations suggest a genetic background of the basic disturbance of schizophrenia: transmitter effects on membranes of neurons and possibly also on glial cells, and energy supply of these effects may be predetermined genetically. It may be assumed that the compensation of such membrane-dependent disturbances will be possible within wide areas of the neural network, except for the ‘bottleneck’ of the overlapping region of the iso- and allocortex.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Uexkuell J: Theoretische Biologie. Berlin, Franke, 1928.
  2. Heisenberg W: Der Teil und das Ganze. München, Piper, 1971.
  3. Squire L: Hippocampus: A synthesis from findings in rats, monkeys and humans. Psychol Rev 1992;99:195–231.
  4. Weisskrantz L: Neuroanatomy of memory and amnesia: A case for multiple memory systems. Hum Neurobiol 1987;6:93–105.

    External Resources

  5. Gonser A, Berret E, Wieser H: Ist der Hippocampus für Lern- und Gedächtnisprozesse notwendig? Nervenarzt 1986;57:276–280.

    External Resources

  6. Hoesen van G, Pandya G: Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices in the rhesus monkey. II. Entorhinal cortex efferents. Brain Res 1975;95:39–59.
  7. Braak H, Braak E: Neurofibrillary changes confined to entorhinal region in Alzheimer disease. Acta Neuropathol 1990;80:479–486.
  8. Braak H, Braak E, Yilmazer D, de Vos R, Jansen E, Bohl J: Pattern of brain destruction in Parkinson’s and Alzheimer’s diseases. J Neural Transm 1996;103:455–490.

    External Resources

  9. Hyman B, van Hoesen G, Kramer L, Damasio A: Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 1986;20:472–481.
  10. Hassler R, Riechert T: Clinical effects produced by stimulation of different thalamic nuclei in humans. Electroencephalogr Clin Neurophysiol 1954;6:518–519.
  11. Goldberg E: Papez circuit revisited: Two systems instead of one?; in Squire LR, Butters N (eds): Neuropsychology of Memory. New York, Guilford Press, 1984, pp 183–193.
  12. Walther-Büel H: Die Dibenaminpsychose. Monatsschr Psych Neurol 1949;118:129–160.
  13. Arnold OH, Hoff H: Die Bedeutung der experimentellen Pharmakologie für die Neurologie und Psychiatrie. Mt Sinai Hosp Rep 1952;19:191–298.
  14. Arnold OH, Hoff H: Untersuchungen über die Wirkungsweise von Lysergsäurediäthylamid. Wien Nervenheilkd 1953;6:129–150.
  15. Arnold OH: N-N-Dimethyltryptamin: Einige erste Versuchsergebnisse. 2. Zentraleuropäisches Symposion für Neuropsychopharmakologie und Pharmakopsychiatrie. Split, 1971. Arzneimittelforschung 1975;25:972–974.
  16. Meduna L: Die Konvulsionstherapie der Schizophrenie. Halle, Thieme, 1937.
  17. Kandel E: The long and short of long term memory. Neuropsychopharmacology 1994;10(suppl 3):2–7.
  18. Hoyer S: Der Energiestoffwechsel des Gehirns und seine Bedeutung für die Demenz vom Alzheimertyp; in Günther V, Meise U, Hinterhuber H (eds): Dementielle Syndrome. Innsbruck, Verlag Integrative Psychiatrie, 1992, pp 165–519.
  19. Horrobin DF: The membrane hypothesis of schizophrenia. Schizophr Res 1994;13:195–207.
  20. Schmitt A, Scheuer L, Maras A, Petroianu G, Gattaz W: Accelerated breakdown of membrane phospholipids in schizophrenics (abstract). 6th World Congr Biological Psychiatry, 1997, p 39.
  21. Stanley J, Pencholingam R, McClure R, Pettegrew J: Achieving better understanding of the membrane phospholipid metabolism in the prefrontal cortex of schizophrenic patients with in vivo 31P MPS. Biol Psychiatry 1997;42:297.
  22. Hassler R: Funktionelle Anatomie und Psychiatrie; in Gruble H, Jung R, Mayer-Gross W, Müller M (eds): Psychiatrie der Gegenwart, 1. Aufl. Berlin, Springer, 1967, Bd 1, pp 152–285.
  23. Danos P, Baumann B, Bernstein T, Strauch R, Nenning H, Bogerts B: Nucleus anterior thalami bei schizophrenen Psychosen: Eine immunhistochemische post-mortem Studie. Fortschr Neurol Psychiat 1996;64(suppl 2):92.
  24. Weiner N: Sympathicolytica; in Goodman S, Goodman A, Gilman A (eds): The Pharmacological Basis of the Therapeutic Effects. New York, McMillan, 1980, pp 176–210.
  25. Stanton P, Jones RS, Mody I, Heinemann F: Epileptiform activity induced by lowering extracellular [Mg2+] in combined hippocampal-entorhinal cortex slices: Modulation by receptors for norepinephrine and N-methyl-D-aspartate. Epilepsy Res 1987;1:53–62.
  26. Lange K, Kornhuber J, Riederer P: Glutamatergic mechanisms in the brain in movement disorders and schizophrenia. Neuropsychiatrie 1994;8:107–119.
  27. Beckmann H: Developmental malformations in cerebral structures of schizophrenic patients; in Judd L, Saletu B, Filip V (eds): Basic and Clinical Science of Mental and Addictive Disorders. Bibli Psychiatr. Basel, Karger, 1997, vol 167, pp 105–110.
  28. Swann A, Crawley J, Grant S, Maas J: Noradrenergic stimulation in vivo increases Na+,K+-ATP-ase in noradrenergic projection areas. Life Sci 1981;28:251–256.
  29. Van Kammen D, Gurklis J, Peters J, Kelley M, Yao J: Noradrenergic mechanisms, state depending and negative symptoms in schizophrenia. Neuropsychopharmacology 1994;10(suppl):939.
  30. Huber G: Konzeption der Einheitspsychose aus der Sicht der Basisstörungslehre; in Mundt C, Sass H (eds): Für und wider die Einheitspsychose. Stuttgart, Thieme, 1992, pp 61–69.
  31. Weinberger D: Cognitive dysfunction in schizophrenia-neuropathological origins and prospects for treatment. Biol Psychiatry 1997;42(suppl 1):297.
  32. Arnold OH: Schizophrener Prozess und schizophrene Symptomgesetze. Stuttgart, Thieme, 1995, pp 143–154.
  33. Deicken R, Calabrese C, Merrin L, Vinogradov S, Fein G, Weiner M: Asymmetry of temporal lobe phosphorus metabolism in schizophrenia: A phosphorus31 magnetic resonance study. Biol Psychiatry 1995;38:231–233.
  34. Crow T: Schizophrenia as failure of the hemispheric dominance for language: Structural and functional evidence (abstract). 6th World Congr Biol Psychiatry, 1997, addendum p 27.
  35. Kornhuber J, Beckmann H, Riederer P: Die glutaminergen und sigmaergen Systeme bei den Schizophrenen; in Beckmann H, Osterheider M (eds): Neurotransmitter und psychische Erkrankungen. Berlin, Springer, 1991, pp 147–157.
  36. Nakanishi S, Masu M, Besho J, Nakajima Y, Hayashi Y, Nomura A, Shigemoto R: Biochemical diversity and physiological functions of NMDA-receptor-dependent LTP. Neuropsychopharmacology 1994;10(suppl 3):8.
  37. Shigetada N, Masajuki, Asaumosa B, Yoshiaki N, Akinori N, Ryuiki S: Molecular diversity and physiological functions of glutamate receptors. Neuropsychopharmacology 1994;10(suppl 3):8–13.
  38. Nicoll RA, Mannabe T, Wyllie DJA: Postsynaptic mechanisms involved in NMDA-receptor dependent LTP. Neuropsychopharmacology 1994;10(suppl 3):686.
  39. Reymann K: Glutamate receptors and associated second messengers involved in postsynaptic mechanisms of hippocampal long-term potentiation and hypoxia. Neuropsychopharmacology 1994;10(suppl 3):210.
  40. Malenka R: Postsynaptic events mediating LTP; in Wheal H, Thompson A (eds): Excitatory Amino Acids and Synaptic Transmission. London, Academic Press, 1991, pp 303–314.
  41. Malenka R: Postsynaptic calcium and synaptic plasticity in the hippocampus. Neuropsychopharmacology 1994;10(suppl 3):427.
  42. Snyder S: Gases as neuronal messengers in the brain. Neuropsychopharmacology 1994;10(suppl 3):34.
  43. Arnold SE, Bryan R, Franz B, Ruben C, Gur PH, Shapiro M, Moberg P, Trojanovski J: Smaller neuron size in schizophrenia in hippocampal subfields that mediate cortico-hippocampal interactions. Am J Psychiatry 1995;152:738–748.
  44. Riederer P, Lange K, Kornhuber J, Jellinger K: Glutamatergic-dopaminergic balance in the brain. Drug Res 1992;42:265–268.
  45. Deutsch A: Dopamine-glutamate interactions, significance for schizophrenia. 6th World Congr Biol Psychiatry, 1997, vol 104, p 112.
  46. Carlsson A: The dopamine and glutamate hypothesis of schizophrenia. 6th World Congr Biol Psychiatry plenary lesson PL3, 1997, p 160.
  47. Arnold OH, Hofmann G: Factor analysis of biochemical and clinical data. Contribution to the characterization of schizophrenia, method and clinical aspects (abstract). 5th World Congr Psychiatry. La Prensa, Medina Mexicana, 1971, pp 188–189.
  48. Bondy B, Jonge S, Pander S, Primbs J, Ackenheil M: Identification of dopamine D4 receptor mRNA in circulating human lymphocytes using nested polymerase chain reaction. J Neuroimmunol 1996;71:139–144.

    External Resources

  49. Lange KW, Brücke T: Dopaminerge Einflüsse auf Problemlöseleistungen bei M. Parkinson. Fortschr Neurol Psychiatrie 1996;64(suppl 2):45.
  50. Benes F: Postmortem findings in schizophrenia with and without superimposed mood. Neuropsychopharmacology 1994;10(suppl 3):635.
  51. Benes F: Development of glutamate, gaba, and dopamine systems in relation to NRH-induced neurotoxicity. Biol Psychiatry 1995;38:783–787.
  52. Bogarts B: Neuropsychology and structural brain imaging in schizophrenia. Curr Opin Psychiatry 1995;8:29–33.

    External Resources

  53. Weinberger D: Schizophrenia: From neuropathology to neurodevelopment. Lancet 1995;364:552–557.
  54. Cardno A, Murphy K, McGuffin P: The genetics of schizophrenia; in Judd L, Saletu B, Filip V (eds): Basic and Clinical Science of Mental and Addictive Disorders. Bibli Psychiatr. Basel, Karger, 1997, vol 167, pp 89–104.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50