Table of Contents
To view the fulltext, log-in or choose pay-per-view options:
Get Access

Polymorphisms of Human Aldehyde Dehydrogenases

Consequences for Drug Metabolism and Disease

Vasiliou V. · Pappa A.
Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, Denver, Colo., USA Pharmacology 2000;61:192–198 (DOI:10.1159/000028400)


Aldehyde dehydrogenases (ALDHs), a superfamily of NAD(P)+-dependent enzymes with similar primary structures, catalyze the oxidation of a wide spectrum of endogenous and exogenous aliphatic and aromatic aldehydes. Thus far, 16 ALDH genes with distinct chromosomal locations have been identified in the human genome. Polymorphism in ALDH2 is associated with altered acetaldehyde metabolism, decreased risk of alcoholism and increased risk of ethanol-induced cancers. Polymorphisms in ALDH3A2, ALDH4A1, ALDH5A1 and ALDH6A1 are associated with metabolic diseases generally characterized by neurologic complications. Mutations in ALDH3A2 cause loss of enzymatic activity and are the molecular basis of Sjögren-Larsson syndrome. Mutations in ALDH4A1 are associated with type II hyperprolinemia. Deficiency in ALDH5A1 causes 4-hydroxybutyric aciduria. Lack of ALDH6A1 appears to be associated with developmental delay. Allelic variants of the ALDH1A1, ALDH1B1, ALDH3A1 and ALDH9A1 genes have also been observed but not yet characterized. This review describes consequences of ALDH polymorphisms with respect to drug metabolism and disease.

Copyright © 2000 S. Karger AG, Basel


Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50