Journal Mobile Options
Table of Contents
Vol. 192, No. 5, 2010
Issue release date: October 2010
Cells Tissues Organs 2010;192:340–350
(DOI:10.1159/000318178)

Femorotibial Cartilage Morphology: Reproducibility of Different Metrics and Femoral Regions, and Sensitivity to Change in Disease

Hudelmaier M. · Wirth W. · Wehr B. · Kraus V. · Wyman B.T. · Hellio Le Graverand M.-P. · Eckstein F.
aInstitute of Anatomy and Musculoskeletal Research, Paracelsus Medical University, Salzburg, Austria; bChondrometrics GmbH, Ainring, Germany; cDepartment of Medicine, Division of Rheumatology and Immunology, Duke University Medical Center, Durham, N.C., and dPfizer Inc., Groton, Conn., USA

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

This study was designed to characterize the reproducibility and sensitivity to change of magnetic resonance imaging-based cartilage morphology metrics and femoral regions of interest (ROIs), in order to provide preferable outcome measures in longitudinal studies of cartilage morphology. Test-retest acquisitions were obtained at 3 tesla (T) in 33 subjects with and without radiographic signs of osteoarthritis (OA) (reproducibility study) as well as baseline and 2-year follow-up acquisitions in 28 subjects with radiographic signs of advanced OA (sensitivity study). Cartilage was segmented in the tibia and two distinct anatomical femoral ROIs, a ‘long’ ROI extending 60% from the trochlear notch to the posterior end of the condyles, and a ‘short’ ROI extending to the intercondylar bone bridge. Coefficients of variation (reproducibility study) and standardized response means (SRMs, sensitivity study) were obtained for different morphology metrics and anatomical regions. The subchondral bone area of the long ROI was 20% greater and less variable than that of the short ROI; cartilage morphology metrics were generally more reproducible in the long ROI. Normalized cartilage volume (VCtAB) and mean cartilage thickness (over the entire subchondral bone area; ThCtAB.Me) tended to be more reproducible and more sensitive to change (SRM up to –0.62) than cartilage volume (SRM up to –0.44), cartilage thickness over the cartilaginous area (ThCcAB; SRM up to –0.48) or maximum cartilage thickness (ThCtAB; SRM up to –0.35). The long femoral cartilage ROI provided more reproducible measurements than the short one. VCtAB and ThCtAB.Me may be preferable metrics in longitudinal studies of articular cartilage adaptation or OA.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Bruyere, O., H. Genant, M. Kothari, S. Zaim, D. White, C. Peterfy, N. Burlet, F. Richy, D. Ethgen, T. Montague, C. Dabrowski, J.Y. Reginster (2007) Longitudinal study of magnetic resonance imaging and standard X-rays to assess disease progression in osteoarthritis. Osteoarthritis Cartilage 15: 98–103.
  2. Cicuttini, F.M., A.E. Wluka, Y. Wang, S.L. Stuckey (2004) Longitudinal study of changes in tibial and femoral cartilage in knee osteoarthritis. Arthritis Rheum 50: 94–97.
  3. Eckstein, F., G. Ateshian, R. Burgkart, D. Burstein, F. Cicuttini, B. Dardzinski, M. Gray, T.M. Link, S. Majumdar, T. Mosher, C. Peterfy, S. Totterman, J. Waterton, C.S. Winalski, D. Felson (2006a) Proposal for a nomenclature for magnetic resonance imaging based measures of articular cartilage in osteoarthritis. Osteoarthritis Cartilage 14: 974–983.
  4. Eckstein, F., R.J. Buck, D. Burstein, H.C. Charles, J. Crim, M. Hudelmaier, D. J. Hunter, G. Hutchins, C. Jackson, N.E. Lane, T.M. Link, L.S. Majumdar, S. Mazzuca, P.V. Prasad, T.J. Schnitzer, M.S. Taljanovic, A. Vaz, B. Wyman, M.P. Le Graverand (2008a) Precision of 3.0 Tesla quantitative magnetic resonance Imaging of cartilage morphology in a multicentre clinical trial. Ann Rheum Dis 67: 1683–1688.
  5. Eckstein, F., R.J. Buck, B.T. Wyman, J.J. Kotyk, M.P. Le Graverand, A.E. Remmers, J.L. Evelhoch, M. Hudelmaier, H.C. Charles (2007a) Quantitative imaging of cartilage morphology at 3.0 Tesla in the presence of gadopentate dimeglumine (Gd-DTPA). Magn Reson Med 58: 402–406.
  6. Eckstein, F., D. Burstein, T.M. Link (2006b) Quantitative MRI of cartilage and bone: degenerative changes in osteoarthritis. NMR Biomed 19: 822–854.
  7. Eckstein, F., H.C. Charles, R.J. Buck, V.B. Kraus, A.E. Remmers, M. Hudelmaier, W. Wirth, J.L. Evelhoch (2005) Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 52: 3132–3136.
  8. Eckstein, F., F. Cicuttini, J.P. Raynauld, J.C. Waterton, C. Peterfy (2006c) Magnetic resonance imaging (MRI) of articular cartilage in knee osteoarthritis (OA): morphological assessment. Osteoarthritis Cartilage 14(suppl A): A46–A75.
  9. Eckstein, F., S. Faber, R. Muhlbauer, J. Hohe, K.H. Englmeier, M. Reiser, R. Putz (2002) Functional adaptation of human joints to mechanical stimuli. Osteoarthritis Cartilage 10: 44–50.
  10. Eckstein, F., M. Hudelmaier, S. Cahue, M. Marshall, L. Sharma (2009a) Medial-to-lateral ratio of tibiofemoral subchondral bone area is adapted to alignment and mechanical load. Calcif Tissue Int 84: 186–194.
  11. Eckstein, F., M. Hudelmaier, R. Putz (2006d) The effects of exercise on human articular cartilage. J Anat 208: 491–512.
  12. Eckstein, F., M. Hudelmaier, W. Wirth, B. Kiefer, R. Jackson, J. Yu, C.B. Eaton, E. Schneider (2006e) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65: 433–441.
  13. Eckstein, F., M. Kunz, M. Schutzer, M. Hudelmaier, R.D. Jackson, J. Yu, C.B. Eaton, E. Schneider (2007b) Two year longitudinal change and test-retest-precision of knee cartilage morphology in a pilot study for the osteoarthritis initiative. Osteoarthritis Cartilage 15: 1326–1332.
  14. Eckstein, F., S. Maschek, W. Wirth, M. Hudelmaier, W. Hitzl, B. Wyman, M. Nevitt, M.P. Le Graverand (2009b) One year change of knee cartilage morphology in the first release of participants from the Osteoarthritis Initiative progression subcohort: association with sex, body mass index, symptoms and radiographic osteoarthritis status. Ann Rheum Dis 68: 674–679.
  15. Eckstein, F., M. Reiser, K.H. Englmeier, R. Putz (2001a) In vivo morphometry and functional analysis of human articular cartilage with quantitative magnetic resonance imaging – from image to data, from data to theory. Anat Embryol (Berl) 203: 147–173.
  16. Eckstein, F., M. Winzheimer, J. Hohe, K.H. Englmeier, M. Reiser (2001b) Interindividual variability and correlation among morphological parameters of knee joint cartilage plates: analysis with three-dimensional MR imaging. Osteoarthritis Cartilage 9: 101–111.
  17. Eckstein, F., W. Wirth, M. Hudelmaier, V. Stein, V. Lengfelder, S. Cahue, M. Marshall, P. Prasad, L. Sharma (2008b) Patterns of femorotibial cartilage loss in knees with neutral, varus, and valgus alignment. Arthritis Rheum 59: 1563–1570.
  18. Glaser, C., R. Burgkart, A. Kutschera, K.H. Englmeier, M. Reiser, F. Eckstein (2003) Femoro-tibial cartilage metrics from coronal MR image data: technique, test-retest reproducibility, and findings in osteoarthritis. Magn Reson Med 50: 1229–1236.
  19. Gratzke, C., C. Glaser, K.H. Englmeier, M. Reiser, F. Eckstein (2002) Comparison of cartilage morphology in professional weight-lifters and sprinters with normal volunteers suggests that human articular cartilage cannot adapt to functional stimulation (abstract). Osteoarthritis Cartilage 10(suppl A): S11.
  20. Guermazi, A., D. Burstein, P. Conaghan, F. Eckstein, M.P. Hellio Le Graverand-Gastineau, H. Keen, F.W. Roemer (2008) Imaging in osteoarthritis. Rheum Dis Clin North Am 34: 645–687.
  21. Hohe, J., G. Ateshian, M. Reiser, K.H. Englmeier, F. Eckstein (2002) Surface size, curvature analysis, and assessment of knee joint incongruity with MRI in vivo. Magn Reson Med 47: 554–561.
  22. Hudelmaier, M., C. Glaser, K.H. Englmeier, M. Reiser, R. Putz, F. Eckstein (2003) Correlation of knee-joint cartilage morphology with muscle cross-sectional areas vs. anthropometric variables. Anat Rec 270A: 175–184.

    External Resources

  23. Hudelmaier, M., C. Glaser, J. Hohe, K.H. Englmeier, M. Reiser, R. Putz, F. Eckstein (2001) Age-related changes in the morphology and deformational behavior of knee joint cartilage. Arthritis Rheum 44: 2556–2561.
  24. Hunter, D.J., P.G. Conaghan, C.G. Peterfy, D.Bloch, A. Guermazi, T. Woodworth, R. Stevens, H.K. Genant (2006) Responsiveness, effect size, and smallest detectable difference of magnetic resonance imaging in knee osteoarthritis. Osteoarthritis Cartilage 14(suppl A): A112–A115.
  25. Hunter, D.J., J. Niu, Y. Zhang, S. Totterman, J. Tamez, C. Dabrowski, R. Davies, M.P. Hellio Le Graverand, M. Luchi, Y. Tymofyeyev, C.R. Beals, for the OAI investiagators (2009) Change in cartilage morphometry: a sample of the progression cohort of the Osteoarthritis Initiative. Ann Rheum Dis 68: 349–356.
  26. Hyhlik-Dürr, A., S. Faber, R. Burgkart, T. Stammberger, K.P. Maag, K.H. Englmeier, M. Reiser, F. Eckstein (2000) Precision of tibial cartilage morphometry with a coronal water-excitation MR sequence. Eur Radiol 10: 297–303.
  27. Jones, G., C. Ding, F. Scott, M. Glisson, F. Cicuttini (2004) Early radiographic osteoarthritis is associated with substantial changes in cartilage volume and tibial bone surface area in both males and females. Osteoarthritis Cartilage 12: 169–174.
  28. Le Graverand, M.P., R.J. Buck, B.T. Wyman, E. Vignon, S.A. Mazzuca, K.D. Brandt, M. Piperno, H.C. Charles, M. Hudelmaier, D.J. Hunter, C. Jackson, V.B. Kraus, T.M. Link, S. Majumdar, P.V. Prasad, T.J. Schnitzer, A. Vaz, W. Wirth, F. Eckstein (2010) Change in regional cartilage morphology and joint space width in osteoarthritis participants versus healthy controls – a multicenter study using 3.0 tesla MRI and Lyon-Schuss radiography. Ann Rheum Dis 69: 155–162.
  29. Le Graverand, M.P., E.P. Vignon, K.D. Brandt, S.A. Mazzuca, M. Piperno, R. Buck, H.C. Charles, D.J. Hunter, C.G. Jackson, V.B. Kraus, T.M. Link, T.J. Schnitzer, A. Vaz, B. Wyman (2008) Head-to-head comparison of the Lyon Schuss and fixed flexion radiographic techniques: long-term reproducibility in normal knees and sensitivity to change in osteoarthritic knees. Ann Rheum Dis 67: 1562–1566.
  30. Lösch, A., F. Eckstein, M. Haubner, K.H. Englmeier (1997) A non-invasive technique for 3-dimensional assessment of articular cartilage thickness based on MRI. 1. Development of a computational method. Magn Reson Imaging 15: 795–804.
  31. Mazzuca, S.A., M.P. Hellio Le Graverand, E. Vignon, D.J. Hunter, C.G. Jackson, V.B. Kraus, T.M. Link, T.J. Schnitzer, A. Vaz, H.C. Charles (2008) Performance of a non-fluoroscopically assisted substitute for the Lyon Schuss knee radiograph: quality and reproducibility of positioning and sensitivity to joint space narrowing in osteoarthritic knees. Osteoarthritis Cartilage 16: 1555–1559.
  32. McWalter, E.J., W. Wirth, M. Siebert, R.M. Eisenhart-Rothe, M. Hudelmaier, D.R. Wilson, F. Eckstein (2005) Use of novel interactive input devices for segmentation of articular cartilage from magnetic resonance images. Osteoarthritis Cartilage 13: 48–53.
  33. Otterness, I.G., F. Eckstein (2007) Women have thinner cartilage and smaller joint surfaces than men after adjustment for body height and weight. Osteoarthritis Cartilage 15: 666–672.
  34. Peterfy, C., M. Kothari (2006) Imaging osteoarthritis: magnetic resonance imaging versus x-ray. Curr Rheumatol Rep 8: 16–21.
  35. Peterfy, C.G., G. Gold, F. Eckstein, F. Cicuttini, B. Dardzinski, R. Stevens (2006) MRI protocols for whole-organ assessment of the knee in osteoarthritis. Osteoarthritis Cartilage 14(suppl A): A95–A111.
  36. Peterfy, C.G., A. Guermazi, S. Zaim, P.F. Tirman, Y. Miaux, D. White, M. Kothari, Y. Lu, K. Fye, S. Zhao, H.K. Genant (2004) Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 12: 177–190.
  37. Raynauld, J.P., J. Martel-Pelletier, M.J. Berthiaume, G. Beaudoin, D. Choquette, B. Haraoui, H. Tannenbaum, J.M. Meyer, J.F. Beary, G.A. Cline, J.P. Pelletier (2006) Long-term evaluation of disease progression through the quantitative magnetic resonance imaging of symptomatic knee osteoarthritis patients: correlation with clinical symptoms and radiographic changes. Arthritis Res Ther 8: R21.
  38. Raynauld, J.P., J. Martel-Pelletier, M.J. Berthiaume, F. Labonte, G. Beaudoin, J.A. de Guise, D.A. Bloch, D. Choquette, B. Haraoui, R.D. Altman, M.C. Hochberg, J.M. Meyer, G.A. Cline, J.P. Pelletier (2004) Quantitative magnetic resonance imaging evaluation of knee osteoarthritis progression over two years and correlation with clinical symptoms and radiologic changes. Arthritis Rheum 50: 476–487.
  39. Sharma, L., F. Eckstein, J. Song, A. Guermazi, P. Prasad, D. Kapoor, S. Cahue, M. Marshall, D.D. Dunlop (2008) Relationship of meniscal damage, meniscal extrusion, malalignment, and joint laxity to subsequent cartilage loss in osteoarthritic knees. Arthritis Rheum 58: 1716–1726.
  40. Wang, Y., A.E. Wluka, F.M. Cicuttini (2005) The determinants of change in tibial plateau bone area in osteoarthritic knees: a cohort study. Arthritis Res Ther 7: R687–R693.
  41. Wirth, W., F. Eckstein (2008) A technique for regional analysis of femorotibial cartilage thickness based on quantitative magnetic resonance imaging. IEEE Trans Med Imaging 27: 737–744.
  42. Wirth, W., M.P. Hellio, Le Graverand, B.T. Wyman, S. Maschek, M. Hudelmaier, W. Hitzl, M. Nevitt, F. Eckstein (2009) Regional analysis of femorotibial cartilage loss in a subsample from the Osteoarthritis Initiative progression subcohort. Osteoarthritis Cartilage 17: 291–297.
  43. Wluka, A.E., S. Stuckey, J. Snaddon, F.M. Cicuttini (2002) The determinants of change in tibial cartilage volume in osteoarthritic knees. Arthritis Rheum 46: 2065–2072.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50