Journal Mobile Options
Table of Contents
Vol. 57, No. 5, 2011
Issue release date: August 2011
Section title: Experimental Section / Mini-Review
Free Access
Gerontology 2011;57:435–443

Reactive Metabolites and AGE/RAGE-Mediated Cellular Dysfunction Affect the Aging Process – A Mini-Review

Fleming T.H. · Humpert P.M. · Nawroth P.P. · Bierhaus A.
Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
email Corresponding Author

Angelika Bierhaus, PhD

Department of Medicine I and Clinical Chemistry

Im Neuenheimer Feld 410, DE–69120 Heidelberg (Germany)

Tel. +49 6221 564 752, Fax +49 6221 564 754



  1. Balaban RS, Nemoto S, Finkel T: Mitochondria, oxidants and aging. Cell 2005;120:483–495.
  2. Davis KJA: Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 1995;61:1–31.
  3. Finkel T, Holbrook NJ: Oxidants, oxidative stress and the biology of aging. Nature 2000;408:239–247.
  4. Murphy MP: How mitochondria produce reactive oxygen species. Biochem J 2009;417:1–13.
  5. Pryor WA: Oxy-radicals and related species: their formation, lifetimes, and reactions. Annu Rev Physiol 1986;48:657–667.
  6. Harman D: Aging: a theory based on free radical and radiation chemistry. J Gerontol 1957;2:298–300.
  7. Du X, Matsumara T, Edelsttein D, Rosetti L, Zsengeller Z, Szabo C, Brownlee M: Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest 2003;112:1049–1057.
  8. Nishikawa T, Edelstein D, Du X-L, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beede D, Oates PJ, Hammes H-P, Giardino I, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemia damage. Nature 2000;404:787–790.
  9. Dobler D, Ahmed N, Song LJ, Eboigbodin KE, Thornalley PJ: Increased dicarbonyl metabolism in endothelial cells in hyperglycemia induces anoikis and impairs angiogenesis by RGD and GFOGER motif modification. Diabetes 2006;55:1961–1969.
  10. Xue M, Qian Q, Adaikalakoteswari A, Rabbani N, Babei-Jadidi R, Thornalley PJ: Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease. Diabetes 2008;57:2809–2817.
  11. Du X-L, Edelstein D, Rossetti L, Fantus IG, Goldberg H, Ziyadeh F, Wu J, Brownlee M: Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA 2000;97:12222–12226.
  12. Chung SS, Ho EC, Lam KS, Chung SK: Contribution of polyol pathway to diabetes-induced oxidative stress. J Am Soc Nephrol 2003;14:S233–S236.
  13. Brownlee M: Biochemisty and molecular cell biology of diabetic complications. Nature 2001;414:813–820.
  14. Warburg O: On the origin of cancer cells. Science 1956;123:309–314.
  15. Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis? Nature Rev Cancer 2004;4:891–899.
  16. Blanchetot C, Boonstra J: The ROS-NOX connection in cancer and angiogenesis. Crit Rev Eukaryot Gene Expr 2008;18:35–45.
  17. Pan JS, Hong MZ, Ren JL: Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol 2009;15:1702–1707.
  18. McCay CM, Crowell MF, Maynard LA: The effect of retarded growth upon the length of life and upon ultimate size. J Nutr 1935;10:63–79.
  19. Jiang J, Jaruga E, Repnevskaya M, Jazwinski S: An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 2000;14:2135–2137.
  20. Partridge L, Green A, Fowler K: Effects of egg-production and of exposure to males on female survival in Drosophila melanogaster. J Insect Physiol 1987;33:745–749.
  21. Chippindale AK, Leroi A, Kim SB, Rose MR: Phenotypic plasticity and selection in Drosophila life history evolution. I. Nutrition and the cost of reproduction. J Evol Biol 1993;6:171–193.
  22. Chapman T, Partridge L: Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc R Soc Lond B 1996;263:755–759.
  23. Weindruch R, Walford R, Fligiel S, Guthrie D: The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 1986;116:641–654.
  24. Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS: Extending the life-span of long-lived mice. Nature 2001;414:412.
  25. Kealy R, Lawler D, Ballam J, Mantz S, Biery D, Greeley E, Lust G, Segre M, Smith G, Stowe H: Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 2002;220:1315–1320.
  26. Lane M, Mattison J, Ingram D, Roth G: Caloric restriction and aging in primates: relevance to humans and possible CR mimetics. Microsc Res Tech 2002;59:335–338.
  27. Lane M, Mattison J, Roth G, Brant L, Ingram D: Effects of long-term diet restriction on aging and longevity in primates remain uncertain. J Gerontol A Biol Sci Med Sci 2004;59:405–407.
    External Resources
  28. Guarente L, Kenyon C: Genetic pathways that regulate ageing in model organisms. Nature 2000;408:255–262.
  29. Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR: Extending life-span in C. elegans. Science 2004;305:1238–1239.
  30. Lee SS, Lee RYN, Fraser AG, Kamath RS, Ahringer J, Ruvkun G: A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 2003;33:40–48.
  31. Turrens JF: Mitochondrial formation of reactive oxygen species. J Physiol 2003;552:335–344.
  32. Hartman P, Ponder R, Lo HH, Ishii N: Mitochondrial oxidative stress can lead to nuclear hypermutability. Mech Ageing Dev 2004;125:417–420.
  33. Nakai D, Shimizu T, Nojiri H, Uchiyama S, Koike H, Takahashi M, Hirokawa K, Shirasawa T: coq7/clk-1 regulates mitochondrial respiration and the generation of reactive oxygen species via coenzyme Q. Aging Cell 2004;3:273–281.
  34. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A: PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 2007;447:550–555.
  35. O’Brien PJ, Siraki AG, Shangari N: Aldehyde sources, metabolism, molecular toxicity, and possible effects on human health. Crit Rev Toxicol 2005;35:609–662.
    External Resources
  36. Thornalley PJ: Dicarbonyl intermediates in the Maillard reaction. Ann NY Acad Sci 2005;1043:111–117.
  37. Thornalley PJ: Clinical significance of glycation. Clin Lab 1999;45:263–273.
  38. Thornalley PJ: Protein and nucleotide damage by glyoxal and methylglyoxal in physiological systems – role in ageing and disease. Drug Metabol Drug Interact 2008;23:125–150.
  39. Thornalley PJ: Modification of the glyoxalase system in human red blood cells by glucose in vitro. Biochem J 1988;254:751–755.
  40. Phillips SA, Thornalley PJ: The formation of methylglyoxal from triose phosphates: investigation using a specific assay for methylglyoxal. Eur J Biochem 1993;212:101–105.
  41. Beisswenger PJ, Howell S, Nelson RG, Mauer M, Szwergold BS: α-Oxoaldehyde metabolism and diabetic complications. Biochem Soc Trans 2003;31:1358–1363.
  42. Thornalley PJ: Glyoxalase I – structure, function and a critical role in the enzymatic defence against glycation. Biochem Soc Trans 2003;31:1343–1348.
  43. Ahmed N, Dobler D, Dean M, Thornalley PJ: Peptide mapping identifies hotspot sites of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. J Biol Chem 2005;280:5724–5732
  44. Morcos M, Du X, Pfisterer F, et al: Glyoxalase I prevents mitchondrial protein modification and enhances lifespan in Caenorhabditis elegans. Aging Cell 2008;7:260–269.
  45. Schlotter A, Kukudov G, Bozorgmehr F, et al: C. elegans as model for the study of high glucose-mediated life span reduction. Diabetes 2009;58:2450–2456.
    External Resources
  46. Sell DR, Kleinman NR, Monnier VM: Longitudinal determination of skin collagen glycation and glycoxidation rates predicts early death in C57BL/6NNIA mice. FASEB J 2000;14:145–146.
  47. Verzijl N, De Groot J, Thorpe SR, et al: Effect of collagen turnover on the accumulation of advanced glycation endproducts. J Biol Chem 2000;275:39027–39031.
  48. Ahmed MU, Brinkmann FE, Degenhardt TP, et al: Nε-(carboxyethyl)lysine, a product of chemical modification of proteins by methylglyoxal, increases with age in human lens proteins. Biochem J 1997;324:565–570.
  49. Monnier VM: Towards a Maillard reaction theory of aging. Prog Clin Biol Res 1989;304:1–22.
  50. Ulrich P, Cerami A: Protein glycation, diabetes and aging. Rec Prog Horm Res 2001;56:1–21.
  51. Baynes JW: The role of AGEs in aging: causation or correlation. Exp Gerontol 2001;36:1527–1537.
  52. Li YM, Steffes M, Donnelly T, et al: Prevention of cardiovascular and renal pathology of aging by the advanced glycation inhibitor aminoguanidine. Proc Natl Acad Sci USA 1996;93:3902–3907.
  53. Vlassara H, et al: Identifying advanced glycation end products as a major source of oxidants in aging: implications for the management and/or prevention of reduced renal function in elderly persons. Semin Nephrol 2009;29:594–603.
  54. Semba RD, Nicklett EJ, Ferrucci L: Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 2010;65:963–975.
    External Resources
  55. Bierhaus A, et al: Understanding RAGE, the receptor for advanced glycation endproducts. J Mol Med 2005;83:876–886.
  56. Bierhaus A, Nawroth PP: Multiple levels of regulation determine the role of the receptor for AGE (RAGE) as common soil in inflammation, immune responses and diabetes mellitus and its complications. Diabetologia 2009;52:2251–2263.
  57. Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A: Structural basis for pattern recognition by the receptor for advanced glycation endproducts (RAGE). J Biol Chem 2008;283:27255–27269.
  58. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM: Nε-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation endproducts that activate cell signalling pathways and modulate gene expression. J Biol Chem 1999;274:31740–31749.
  59. Bierhaus A, et al: Diabetes-associated sustained activation of the transcription factor nuclear factor-kappaB. Diabetes 2001;50:2792–2808.
  60. Li J, Schmidt AM: Characterization and functional analysis of the promoter of RAGE, the receptor for advanced glycation end products. J Biol Chem 1997;272:16498–16506.
  61. Brett J, Schmidt AM, Yan SD, et al: Survey of the distribution of a newly characterized receptor for advanced glycation endproducts in tissues. Am J Pathol 1993;143:1699–1712.
  62. Coughlan MT, Thornburn DR, Penfold SA, et. al: RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol 2009;20:742–752.
  63. Abordo EA, Minhas HS, Thornalley PJ: Accumulation of alpha-oxoaldehydes during oxidative stress: a role in cytotoxicity. Biochem Pharmacol 1999;58:641–648.
  64. Bierhaus A, Stoyanov S, Haag GM, Konrade I, et al: RAGE-deficiency reduced diabetes-associated impairment of glyoxalase-1 in neuronal cells. Diabetes 2006;55:A511.
    External Resources
  65. Gravina S, Vijg J: Epigentic factors in aging and longevity. Pflugers Arch 2010;459:247–258.
  66. Calvanese V, Lara E, Kahn A, Fraga MF: The role of epigenetics in aging and age-related diseases. Ageing Res Rev 2009;8:268–276.
  67. Fraga MF: Genetic and epigenetic regulation of aging. Curr Opin Immunol 2009;21:446–453.
  68. Perrone L, et al: Thioredoxin interacting protein induced inflammation through chromatin modification in retinal capillary cells under diabetic conditions. J Cell Physiol 2009;221;262–272.
  69. Brasacchio D, Okabe J, Tikellis C, et al: Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene-activating epigenetic marks that coexist on the lysine tail. Diabetes 2009;58:1229–1236.