Journal Mobile Options
Table of Contents
Vol. 68, No. 2, 2010
Issue release date: February 2011
Ann Nestlé [Fr] 2010;68:72–78
(DOI:10.1159/000323157)

Nouvelles approches thérapeutiques de la phénylcétonurie

Eavri R. · Lorberboum-Galski H.
Département de biochimie et de biologie moléculaire, Faculté de Médecine, IMRIC, Université Hébraïque, Jérusalem, Israël

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Depuis sa découverte en 1934 par Følling, la phénylcétonurie (PCU) a fait l’objet de nombreuses recherches pluridisciplinaires: génétique humaine, biochimie, développement, neurobiologie... Pendant les 75 dernières années, différentes mutations sur les gènes responsables de la maladie ont été cartographiées, les mécanismes biochimiques et les causes des symptômes cliniques ont été élucidés. De plus, les programmes de dépistage néonatal basés sur le test de Guthrie, les analyses biochimiques supplémentaires réalisées chez les nouveau-nés suspects, et le régime hypoprotéique contrôlé en phénylalanine (Phe) ont eu un impact considérable sur la façon dont sont considérés ces troubles innés du métabolisme de nos jours. En fait, le régime hypoprotéique contrôlé en Phe, un traitement simple et efficace de la PCU, est considéré comme un progrès majeur dans le traitement de cette maladie, permettant le maintien de concentrations basses en Phe dans le sang, évitant ainsi que des niveaux élevés et persistants de Phe altèrent le développement normal du cerveau. Cependant, malgré la simplicité et l’efficacité de ce régime, la non compliance de certains patients et les conséquences qui en découlent ont conduit les scientifiques à chercher en permanence de nouvelles alternatives au régime hypoprotéique contrôlé en Phe. Dans cet article, nous présentons les avancées thérapeutiques majeures de la PCU, et notamment les nouveaux traitements proposés. Nous restons optimistes quant à l’éventualité qu’une ou plusieurs de ces propositions évoluent par la suite en futurs médicaments pour les patients phénylcétonuriques.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Christ SE: Asbjorn Folling and the discovery of phenylketonuria. J Hist Neurosci 2003;12:44–54.
  2. Kaufman S: A model of human phenylalanine metabolism in normal subjects and in phenylketonuric patients. Proc Natl Acad Sci USA 1999;96:3160–3164.
  3. Scriver CR: Whatever happened to PKU? Clin Biochem 1995;28:137–144.
  4. Pietz J, Kreis R, Rupp A, et al: Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. J Clin Invest 1999;103:1169–1178.
  5. Surtees R, Blau N: The neurochemistry of phenylketonuria. Eur J Pediatr 2000;159 (suppl 2):S109–S113.
  6. Huttenlocher PR: The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 2000;159(suppl 2):S102–S106.
  7. Joseph B, Dyer CA: Relationship between myelin production and dopamine synthesis in the PKU mouse brain. J Neurochem 2003;86:615–626.
  8. National Institutes of Health Consensus Development Conference Statement: Phenylketonuria: screening and management, October 16–18, 2000. Pediatrics 2001;108:972– 982.
  9. Macdonald A, Daly A, Davies P, et al: Protein substitutes for PKU: what’s new? J Inherit Metab Dis 2004;27:363–371.
  10. Costello PM, Beasley MG, Tillotson SL, et al: Intelligence in mild atypical phenylketonuria. Eur J Pediatr 1994;153:260–263.
  11. Smith I, Beasley MG, Ades AE: Intelligence and quality of dietary treatment in phenylketonuria. Arch Dis Child 1990;65:472–478.
  12. Koch R, Hanley W, Levy H, et al: Maternal phenylketonuria: an international study. Mol Genet Metab 2000;71:233–239.
  13. Erlandsen H, Bjorgo E, Flatmark T, et al: Crystal structure and site-specific mutagenesis of pterin-bound human phenylalanine hydroxylase. Biochemistry 2000;39:2208–2217.
  14. Teigen K, Froystein NA, Martinez A: The structural basis of the recognition of phenylalanine and pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism. J Mol Biol 1999;294:807–823.
  15. Chehin R, Thorolfsson M, Knappskog PM, et al: Domain structure and stability of human phenylalanine hydroxylase inferred from infrared spectroscopy. FEBS Lett 1998;422:225–230.
  16. Longhi R, Riva E, Valsasina R, et al: Phenylketonuria due to dihydropteridine reductase deficiency: presentation of two cases. J Inherit Metab Dis 1985;8(suppl 2):97–98.
  17. Milstien S, Kaufman S, Summer GK: Hyperphenylalaninemia due to dihydropteridine reductase deficiency: diagnosis by measurement of oxidized and reduced pterins in urine. Pediatrics 1980;65:806.
  18. Erlandsen H, Stevens RC: A structural hypothesis for BH4 responsiveness in patients with mild forms of hyperphenylalaninaemia and phenylketonuria. J Inherit Metab Dis 2001;24:213–230.
  19. Harding C: Progress toward cell-directed therapy for phenylketonuria. Clin Genet 2008;74:97–104.
  20. Fiege B, Blau N: Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria. J Pediatr 2007;150:627–630.
  21. Sanford M, Keating GM: Sapropterin: a review of its use in the treatment of primary hyperphenylalaninaemia. Drugs 2009;69:461–476.
  22. Matalon R, Michals-Matalon K, Bhatia G, et al: Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis 2007;30:153–158.
  23. Rocha JC, Martel F: Large neutral amino acids supplementation in phenylketonuric patients. J Inherit Metab Dis 2009;32:472–480.
  24. van Calcar SC, MacLeod EL, Gleason ST, et al: Improved nutritional management of phenylketonuria by using a diet containing glycomacropeptide compared with amino acids. Am J Clin Nutr 2009;89:1068–1077.
  25. Koletzko B, Beblo S, Demmelmair H, et al: Does dietary DHA improve neural function in children? Observations in phenylketonuria. Prostaglandins Leukot Essent Fatty Acids 2009;81:159–164.
  26. Vajro P, Strisciuglio P, Houssin D, et al: Correction of phenylketonuria after liver transplantation in a child with cirrhosis. N Engl J Med 1993;329:363.
  27. Burdelski M, et al: Treatment of inherited metabolic disorders by liver transplantation. J Inherit Metab Dis 1991;14:604–618.
  28. Meyburg J, Hoffmann GF: Liver transplantation for inborn errors of metabolism. Transplantation 2005;80(suppl 1):S135–S137.

    External Resources

  29. Fang B, Eisensmith RC, Li XH, et al: Gene therapy for phenylketonuria: phenotypic correction in a genetically deficient mouse model by adenovirus-mediated hepatic gene transfer. Gene Ther 1994;1:247–254.
  30. Chen L, Woo SL: Complete and persistent phenotypic correction of phenylketonuria in mice by sitespecific genome integration of murine phenylalanine hydroxylase cDNA. Proc Natl Acad Sci USA 2005;102:15581–15586.
  31. Harding CO, Neff M, Jones K, et al: Expression of phenylalanine hydroxylase (PAH) in erythrogenic bone marrow does not correct hyperphenylalaninemia in Pah(enu2) mice. J Gene Med 2003;5:984–993.
  32. Ding Z, Harding CO, Rebuffat A, et al: Correction of murine PKU following AAV-mediated intramuscular expression of a complete phenylalanine hydroxylating system. Mol Ther 2008;16:673–681.
  33. Muruve DA, Barnes MJ, Stillman IE, et al: Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum Gene Ther 1999;10:965–76.
  34. Verma IM, Weitzman MD: Gene therapy: twenty-first century medicine. Annu Rev Biochem 2005;74:711–738.
  35. Grabowski GA: Recent clinical progress in Gaucher disease. Curr Opin Pediatr 2005;17:519–524.
  36. Sarkissian CN, Shao Z, Blain F, et al: A different approach to treatment of phenylketonuria: phenylalanine degradation with recombinant phenylalanine ammonia lyase. Proc Natl Acad Sci USA 1999;96:2339–2344.
  37. Sarkissian CN, Gamez A: Phenylalanine ammonia lyase, enzyme substitution therapy for phenylketonuria, where are we now? Mol Genet Metab 2005;86(suppl 1):S22–S26.
  38. Gamez A, Wang L, Sarkissian CN, et al: Structure-based epitope and PEGylation sites mapping of phenylalanine ammonia-lyase for enzyme substitution treatment of phenylketonuria. Mol Genet Metab 2007;91:325–334.
  39. Sarkissian CN, Gamez A, Wang L, et al: Preclinical evaluation of multiple species of PEGylated recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci USA 2008;105:20894–20899.
  40. FitzGerald DJ,Kreitman r, Wilson W, et al: Recombinant immunotoxins for treating cancer. Int J Med Microbiol 2004;293:577–582.
  41. Brinkmann U, Pastan I: Immunotoxins against cancer. Biochim Biophys Acta 1994;1198:27–45.
  42. Kreitman RJ: Immunotoxins. Expert Opin Pharmacother 2000;1:1117–1129.
  43. Foss F: Clinical experience with denileukin diftitox (ONTAK). Semin Oncol 2006;33 (suppl 3):S11–S16.

    External Resources

  44. Wilkins DK, Mayer A: Development of antibodies for cancer therapy. Expert Opin Biol Ther 2006;6:787–796.
  45. Eaveri R, Ben-Yehudah A, Lorberboum-Galski H: Surface antigens/receptors for targeted cancer treatment: the GnRH receptor/binding site for targeted adenocarcinoma therapy. Curr Cancer Drug Targets 2004;4:673–687.
  46. Snyder EL, Dowdy SF: Recent advances in the use of protein transduction domains for the delivery of peptides, proteins and nucleic acids in vivo. Expert Opin Drug Deliv 2005;2:43–51.
  47. Frankel AD, Pabo CO: Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988;55:1189–1193.
  48. Schwarze SR, Ho A, Vocero-Akbani A, et al: In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 1999;285:1569–1572.
  49. Wadia JS, Dowdy SF: Transmembrane delivery of protein and peptide drugs by TAT-mediated transduction in the treatment of cancer. Adv Drug Deliv Rev 2005;57:579–596.
  50. Cai SR, Xu G, Becker-Hapak M, et al: The kinetics and tissue distribution of protein transduction in mice. Eur J Pharm Sci 2006;27:311–319.
  51. Weidner KM, Arakaki N, Hartmann G, et al: Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proc Natl Acad Sci USA 1991;88:7001–7015.
  52. Donate LE, Gherardi E, Srinivasan N, et al: Molecular evolution and domain structure of plasminogen-related growth factors (HGF/SF and HGF1/MSP). Protein Sci 1994;3:2378–2394.
  53. Prat M, Narsimhan RP, Crepaldi T, et al: The receptor encoded by the human c-MET oncogene is expressed in hepatocytes, epithelial cells and solid tumors. Int J Cancer 1991;49:323–328.
  54. Birchmeier C, Birchmeier W, Gherardi E, et al: Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003;4:915–925.
  55. Parr C, Hiscox S, Nakamura T, et al: Nk4, a new HGF/SF variant, is an antagonist to the influence of HGF/SF on the motility and invasion of colon cancer cells. Int J Cancer 2000;85:563–570.
  56. Eavri R, Lorberboum-Galski H: A novel approach for enzyme replacement therapy. The use of phenylalanine hydroxylase-based fusion proteins for the treatment of phenylketonuria. J Biol Chem 2007;282:23402–23409.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50