Journal Mobile Options
Table of Contents
Vol. 70, No. 4, 2010
Issue release date: February 2011
Section title: Original Paper
Free Access
Hum Hered 2010;70:292–300
(DOI:10.1159/000323318)

Genome-Wide Meta-Analysis of Joint Tests for Genetic and Gene-Environment Interaction Effects

Aschard H.a · Hancock D.B.b · London S.J.b · Kraft P.a
aProgram in Molecular and Genetic Epidemiology, Harvard School of Public Health, Boston, Mass., bEpidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, N.C., USA
email Corresponding Author

Hugues Aschard

Harvard School of Public Health, Department of Epidemiology

Building 2, Room 205, 665 Huntington Avenue

Boston, MA 02115 (USA)

Tel. +1 617 432 5900, Fax +1 617 432 1722, E-Mail haschard@hsph.harvard.edu


References

  1. Khoury MJ, Wacholder S: Invited commentary: from genome-wide association studies to gene-environment-wide interaction studies – challenges and opportunities. Am J Epidemiol 2009;169:227–230, discussion 234–235.
  2. Chatterjee N, Kalaylioglu Z, Carroll RJ: Exploiting gene-environment independence in family-based case-control studies: increased power for detecting associations, interactions and joint effects. Genet Epidemiol 2005;28:138–156.
  3. Murcray CE, Lewinger JP, Gauderman WJ: Gene-environment interaction in genome-wide association studies. Am J Epidemiol 2009;169:219–226.
  4. Umbach DM, Weinberg CR: Designing and analysing case-control studies to exploit independence of genotype and exposure. Stat Med 1997;16:1731–1743.
  5. Kraft P, Yen YC, Stram DO, Morrison J, Gauderman WJ: Exploiting gene-environment interaction to detect genetic associations. Hum Hered 2007;63:111–119.
  6. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, Voight BF: Practical aspects of imputation-driven meta-analysis of genome-wide association studies. Hum Mol Genet 2008;17:R122–R128.
  7. Zeggini E, Ioannidis JP: Meta-analysis in genome-wide association studies. Pharmacogenomics 2009;10:191–201.
  8. Cornelis MC, Tchetgen Tchetgen EJ, Liang L, Qi L, Chatterjee N, Hu FB, Kraft P: Gene-environment interactions in genome-wide association studies: a comparative study of tests applied to empirical studies of type 2 diabetes. Under review.
  9. Tchetgen Tchetgen EJ, Kraft P: On the robustness of tests of genetic associations incorporating gene-environment interaction when the environmental exposure is mis-specified. Epidemiology, in press.
  10. Aulchenko YS, Struchalin MV, van Duijn CM: ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 2010;11:134.
  11. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007;81:559–575.
  12. van Houwelingen HC, Arends LR, Stijnen T: Advanced methods in meta-analysis: multivariate approach and meta-regression. Stat Med 2002;21:589–624.
  13. Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE, Wacholder S, Wang Z, Welch R, Hutchinson A, Wang J, Yu K, Chatterjee N, Orr N, Willett WC, Colditz GA, Ziegler RG, Berg CD, Buys SS, McCarty CA, Feigelson HS, Calle EE, Thun MJ, Hayes RB, Tucker M, Gerhard DS, Fraumeni JF Jr, Hoover RN, Thomas G, Chanock SJ: A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 2007;39:870–874.
  14. Qi L, Cornelis MC, Kraft P, Stanya KJ, Linda Kao WH, Pankow JS, Dupuis J, Florez JC, Fox CS, Pare G, Sun Q, Girman CJ, Laurie CC, Mirel DB, Manolio TA, Chasman DI, Boerwinkle E, Ridker PM, Hunter DJ, Meigs JB, Lee CH, van Dam RM, Hu FB: Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes. Hum Mol Genet 2010;19:2706–2715.
  15. Li Y, Abecasis GR: Mach 1.0: Rapid haplotype reconstruction and missing genotype inference. Am J Hum Genet 2006;S79:2290.
  16. Lindstrom S, Yen YC, Spiegelman D, Kraft P: The impact of gene-environment dependence and misclassification in genetic association studies incorporating gene-environment interactions. Hum Hered 2009;68:171–181.
  17. Weiss NS: Subgroup-specific associations in the face of overall null results: should we rush in or fear to tread? Cancer Epidemiol Biomarkers Prev 2008;17:1297–1299.
  18. Greenland S: Interactions in epidemiology: relevance, identification, and estimation. Epidemiology 2009;20:14–17.
  19. Kraft P, Hunter DJ: The challenge of assessing gene-environment and gene-gene interactions; in Khouy MJ, Bedrosian SR, Gwinn M, et al (eds): Human Genome Epidemiology. New York, Oxford University Press, 2010, pp 165–187.
  20. Siemiatycki J, Thomas DC: Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol 1981;10:383–387.
  21. Manning AK, Lavalley M, Liu CT, Rice K, An P, Liu Y, Miljkovic I, Rasmussen-Torvik L, Harris TB, Province MA, Borecki IB, Florez JC, Meigs JB, Cupples LA, Dupuis J: Meta-analysis of gene-environment interaction: joint estimation of SNP and SNP x environment regression coefficients. Genet Epidemiol 2011;35:11–18.