Journal Mobile Options
Table of Contents
Vol. 20, No. 4, 2011
Issue release date: May 2011
Open Access Gateway
Med Princ Pract 2011;20:303–320
(DOI:10.1159/000324534)

Sugar Alcohol Sweeteners as Alternatives to Sugar with Special Consideration of Xylitol

Mäkinen K.K.
Institute of Dentistry, University of Turku, Turku, Finland
email Corresponding Author

Abstract

Introduction: Dental caries is a diet-associated disease which continues to be a serious health problem in most industrialized and developing countries. Strategies to maximize caries prevention should automatically consider the use of sugar substitutes. It is important that public health authorities are made cognizant of the availability of new polyol-type sugar substitutes. Review Summary: Clinical studies have shown that xylitol, a natural, physiologic sugar alcohol of the pentitol type, can be used as a safe and effective caries-limiting sweetener. Habitual use of xylitol-containing food and oral hygiene adjuvants has been shown to reduce the growth of dental plaque, to interfere with the growth of caries-associated bacteria, to decrease the incidence of dental caries, and to be associated with remineralization of caries lesions. Numerous public regulatory bodies have endorsed the use of xylitol as a caries-limiting agent. Other sugar alcohols that have been successfully used as sugar substitutes include D-glucitol (sorbitol), which, however, owing to its hexitol nature, normally has no strong effect on the mass and adhesiveness of bacterial plaque and on the growth of mutans streptococci. A tetritol-type alditol, erythritol, has shown potential as a non-cariogenic sugar substitute. Combinations of xylitol and erythritol may reduce the incidence of caries more effectively than either alditol alone. Conclusions: Partial sugar substitution with polyols is an important dietary tool in the prevention of dental caries that should be used to enhance existing fluoride-based caries prevention programmes. The most effective method of conveying this information to the public is through a proper health claim for these alditols in food labelling. The present review summarizes clinical and biochemical aspects of the above three dietary polyols and emphasizes the role of sugar substitution as a potential health-promoting strategy.


 goto top of outline Key Words

  • Sugar alcohols
  • Polyols
  • Erythritol
  • Xylitol
  • Sorbitol
  • Dental caries
  • Public health
  • Sugar substitution

 goto top of outline Abstract

Introduction: Dental caries is a diet-associated disease which continues to be a serious health problem in most industrialized and developing countries. Strategies to maximize caries prevention should automatically consider the use of sugar substitutes. It is important that public health authorities are made cognizant of the availability of new polyol-type sugar substitutes. Review Summary: Clinical studies have shown that xylitol, a natural, physiologic sugar alcohol of the pentitol type, can be used as a safe and effective caries-limiting sweetener. Habitual use of xylitol-containing food and oral hygiene adjuvants has been shown to reduce the growth of dental plaque, to interfere with the growth of caries-associated bacteria, to decrease the incidence of dental caries, and to be associated with remineralization of caries lesions. Numerous public regulatory bodies have endorsed the use of xylitol as a caries-limiting agent. Other sugar alcohols that have been successfully used as sugar substitutes include D-glucitol (sorbitol), which, however, owing to its hexitol nature, normally has no strong effect on the mass and adhesiveness of bacterial plaque and on the growth of mutans streptococci. A tetritol-type alditol, erythritol, has shown potential as a non-cariogenic sugar substitute. Combinations of xylitol and erythritol may reduce the incidence of caries more effectively than either alditol alone. Conclusions: Partial sugar substitution with polyols is an important dietary tool in the prevention of dental caries that should be used to enhance existing fluoride-based caries prevention programmes. The most effective method of conveying this information to the public is through a proper health claim for these alditols in food labelling. The present review summarizes clinical and biochemical aspects of the above three dietary polyols and emphasizes the role of sugar substitution as a potential health-promoting strategy.

Copyright © 2011 S. Karger AG, Basel


 goto top of outline References
  1. Glinsmann WH, Irausquin H, Park YK: Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of Sugars Task Force. J Nutr 1986;116:S1–S216.
  2. US Department of Health and Human Services. The Surgeon General’s report on nutrition and health. DHHS (PHS) Publ 1988, No 88–50211.
  3. Milgrom P, Zero DT, Tanzer JM: An examination of the advances in science technology of prevention of tooth decay in young children since the Surgeon General’s Report on Oral Health. Acad Pediatr 2009;9:404–409.
  4. Mäkinen KK: Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review. Int J Dent 2010;2010:981072.

    External Resources

  5. Ammons MC, Ward LS, Fisher ST, Wolcott RD, James GA: In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. Int J Antimicrob Agents 2009;33:230–236.
  6. Hildebrandt GH, Sparks BS: Maintaining mutans streptococci suppression with xylitol chewing gum. J Am Dent Assoc 2000;131:909–916.
  7. Georgieff M, Moldawer LL, Bistrian BR, Blackburn GL: Xylitol, an energy source for intra-venous nutrition after trauma. J Parenter Enteral Nutr 1985;9:199–209.
  8. Bässler KH, Prellwitz W, Unbehaun V, Lang K: Xylitstoffwechsel beim Menschen: zur Frage der Eignung von Xylit als Zucker-Ersatz beim Diabetiker. Klin Wochenschr 1962;40:791–793.
  9. Natah SS, Hussien KR, Tuominen JA, Koivisto VA: Metabolic response to lactitol and xylitol in healthy men. Am J Clin Nutr 1997;65:947–950.
  10. Assouline G, Danon A: Hyperosmotic xylitol, prostaglandins and gastric mucosal barrier. Prostaglandin Med 1981;7:63–70.
  11. Palchun VT, Aslamazova VI, Buyanovskaya OA, Polyakova TS: Employment of xylit for intralabyrinthine hydropsy detection. Vestn Otorinolaringol 1982;4:35–38 (in Russian).

    External Resources

  12. Palchun VT: Diagnostic informativity of the drugs used to reveal intralabyrinthine hydrops according to the data of audiologic and biochemical studies. Zh Ushn Nos Gorl Bolezn 1983;43:27–31 (in Russian).
  13. Bruyland M, Ebinger G: Beneficial effect of a treatment with xylitol in a patient with myoadenylate deaminase deficiency. Clin Neuropharmacol 1994;17:492–493.
  14. Van Eys J, Wang YM, Chan S, Tanphaichitr VS, King SM: Xylitol as a therapeutic agent in glucose-6-phosphate dehydrogenase deficiency; in Sipple HL, McNutt KW (eds): Sugars in Nutrition. New York, Academic Press, 1974, pp 613–631.
  15. Zimmermann HG, Gerlach E: Stimulation of myocardial adenine biosynthesis by pentoses and pentitols. Pflügers Arch 1978;376:223.
  16. Mäkinen KK: Biochemical Principles of the Use of Xylitol in Medicine and Nutrition with Special Consideration of Dental Aspects. Basel, Birkhäuser, 1978 (also Experientia Suppl 1978;30:1–160).
  17. Smith JT: Effect of xylitol feeding on the mixed function oxidase system. Nutr Rep Int 1982;26:347–353.
  18. Touissant W, Roggenkamp K, Bässler KH: Behandlung der Ketonämie im Kindesalter mit Ksylit. Z Kinderheilk 1967;98:146–154.
  19. Mäkinen KK: Can the pentitol-hexitol theory explain the clinical observations made with xylitol? Med Hypotheses 2000;54:603–613.
  20. Rofe AM, Krishnan R, Bais R, Edwards JB, Conyers EAJ: A mechanism for the thiamine-sparing action of dietary xylitol in the rat. Aust J Exp Biol Med Sci 1982;60:101–111.
  21. Quadflieg KH, Brand K: Carbon and hydrogen metabolism of xylitol and various sugars in human erythrocytes. Hoppe-Seyler’s Z Physiol Chem 1978;359:29–36.
  22. Ukab WA, Sato J, Wang YM, van Eys J: Xylitol mediated amelioration of acetylphenylhydrazine-induced hemolysis in rabbits. Metabolism 1981;30:1053–1059.
  23. Uhari M, Kontiokari T, Koskela M, Niemelä M: Xylitol chewing gum in prevention of acute otitis media: double blind randomised trial. Br Med J 1996;313:1180–1184.
  24. Uhari M, Kontiokari T, Niemelä M: A novel use of xylitol sugar in preventing acute otitis media. Pediatrics 1998;102:879–884.
  25. Uhari M, Tapiainen T, Kontiokari T: Xylitol in preventing acute otitis media. Vaccine 2000;19(suppl 1):S144–S147.
  26. Kontiokari T, Svanberg M, Mattila P, Leinonen M, Uhari M: Quantitative analysis of the effect of xylitol on pneumococcal nasal colonisation in rats. FEMS Microbiol Lett 1999;178:313–317.
  27. Zabner J, Seiler MP, Launspach JL, Karp PH, Kearney WR, Look DC, Smith JJ, Welsh MJ: The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Proc Natl Acad Sci USA 2000;97:11614–11619.
  28. Abolhassani M, Wertz X, Pooya M, Chaumet-Riffaud P, Guais A, Schwartz L: Hyperosmolarity causes inflammation through the methylation of protein phosphatase 2A. Inflamm Res 2008;57:419–429.
  29. Ambudkar SV, Maloney PC: Bacterial anion exchange. Use of osmolytes during solubilization and reconstitution of phosphate-linked antiport from Streptococcus lactis. J Biol Chem 1986;261:10079–10086.
  30. Katsuyama M, Kobayashi Y, Ichikawa H, Mizuno A, Miyachi Y, Matsunaga K, Kawashima M: A novel method to control the balance of skin microflora. 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci 2005;38:207–213.
  31. Yoshimura N, Yamada H, Haraguchi M: Anti-arrhythmic effect of xylitol during anesthesia. Masui 1979;28:841–848 (in Japanese with English summary).
  32. Vainshtein SG, Pivikova MI, Maksudova D: Xylitol action on the gastric secretion and the external secretory function of the pancreas in patients with duodenal ulcer. Vopr Pitan 1973;1:14–17 (in Russian).
  33. Sato J, Wang YM, van Eys J: Metabolism of xylitol and glucose in rats bearing hepatocellular carcinomas. Cancer Res 1981;41:3192–3199.
  34. Takahashi K, Mashiko T, Akiba Y: Effect of dietary concentration of xylitol on growth in male broiler chicks during immunological stress. Poult Sci 2000;79:743–747.
  35. Sood C, Khan S, O’Brien PJ: Phenylenediamine induced hepatocytes cytotoxicity redox. Cycling mediated oxidative stress without oxygen activation. Biochim Biophys Acta 1997;1335:343–352
  36. Dowd SE, Sun Y, Smith E, Kennedy JP, Jones CE, Wolcott R: Effects of biofilm treatments on the multi-species Lubbock chronic wound biofilm model. J Wound Care 2009;18:508–512.
  37. Faraji H, Lindsay RC: Characterization of antioxidant activity of sugars and polyhydric alcohols in fish oil emulsions. J Agric Food Chem 2004;52:7164–7171.
  38. Mäkinen KK, Söderling E: Effect of xylitol on some food-spoilage microorganisms. J Food Sci 1981;46:950–951.
  39. Kwon NH, Kim SH, Kim JY, Lim JY, Kim JM, Jung WK, Park KT, Bae WK, Noh KM, Choi JW, Hur J, Park YH: Antimicrobial performance of alkaline ionic fluid (GC-100X) and its ability to remove Escherichia coli O157:H7 from the surface of tomatoes. J Food Protect 2003;66:1604–1610.
  40. Guo Q, Tang W, Inagaki Y, Kokudo N, Sugawara Y, Karako H, Nakata M, Makuuchi M: Subcellular localization of KL-6 mucin in colorectal carcinoma cell lines: association with metastatic potential and cell morphology. Oncol Rep 2007;17:1057–1060.
  41. Mäkinen KK, Hämäläinen M, Tuori M, Poutiainen E: A polyol mixture in the diet of dairy cows. Nutr Rep Int 1981;23:1077–1087.
  42. Poutiainen E, Tuori M, Sirviö I: The fermentation of polyalcohols by rumen microbes in vitro. Proc Nutr Soc 1976;35:140A–141A.
  43. Korhonen H, Rintamäki O, Antila M, Tuori M, Poutiainen E: A polyol mixture or molasses treated beet pulp in the silage based diet of diary cows. II. The effect on the lactoperoxidase and thiocyanate content of milk and the udder health. J Sci Agric Soc Finl 1977; 49:330–345.
  44. Hamada T, Ishii T, Taguchi S: Blood changes of spontaneously ketotic cows before and after four hours after administration of glucose, xylitol, 1,2-propanediol, or magnesium propionate. J Dairy Sci 1982;65:1509–1513.
  45. Sakai T, Hamakawa M, Kubo S: Glucose and xylitol tolerance tests for ketotic and healthy dairy cows. J Dairy Sci 1996;79:372–377.
  46. Mizutani H, Sako T, Toyoda Y, Fukuda H, Urumuhang N, Koyama H, Hirose H: The intravenous xylitol tolerance test in non-lactating cattle. Vet Res Commun 2003;27:633–641.
  47. Toyoda Y, Sako T, Mizutani H, Sugiyama M, Hayakawa N, Hasegawa H, Hirose H: A bolus infusion of xylitol solution in the treatment of cow ketosis does not cause a surge in insulin secretion. J Vet Med Sci 2008;70:1091–1093.
  48. Näsi M, Alaviuhkola T: Polyol mixture supplementation in the diet of breeding sows and piglets. J Sci Agric Soc Finl 1980;52:50–58.

    External Resources

  49. Näsi M, Alaviuhkola T: Polyol mixture supplementation as a sweetener and/or feed additive in the diet of piglets. J Sci Agric Soc Finl 1981;53:57–63.
  50. Tanzer J: Xylitol chewing gum and dental caries. Int Dent J 1995;45(suppl 1):65–76.
  51. Trahan L: Xylitol: a review of its action on mutans streptococci and dental plaque – its clinical significance. Int Dent J 1955;45 (suppl 1):77–92.
  52. Mäkinen KK: The rocky road of xylitol to its clinical application. J Dent Res 2000;79:1352–1355.
  53. Mäkinen KK: New biochemical aspects of sweeteners. Int Dent J 1985;35:23–35.
  54. Tuompo H, Meurman J, Lounatmaa K, Linkola J: Effect of xylitol and other carbon sources on the cell wall of Streptococcus mutans. Scand J Dent Res 1983;91:17–25.
  55. Lee YE, Choi YH, Jeong SH, Kim HS, Lee SH, Song KB: Morphological changes in Streptococcus mutans after chewing gum containing xylitol for twelve months. Curr Microbiol 2009;58:332–337.
  56. Mäkinen KK, Scheinin A: Turku sugar studies VII. Principal biochemical findings on whole saliva and plaque. Acta Odontol Scand 1975;33(suppl 70):129–171.
  57. Rölla G, Oppermann RV, Bowen WH, Ciardi JE, Knox WH: High amounts of lipoteichoic acids in sucrose-induced plaque in vivo. Caries Res 1980;14:235–238.
  58. Mäkinen KK: Latest dental studies on xylitol and mechanism of action of xylitol in caries limitation; in Grenby TH (ed): Progress in Sweeteners. London, Elsevier Applied Science, 1989, pp 331–362.
  59. Tanzer JM, Thompson A, Wen ZT, Burne RA: Streptococcus mutans: fructose transport, xylitol resistance, and virulence. J Dent Res 2006;85:369–373.
  60. Miyasawa-Hori H, Aizawa S, Takahashi N: Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Oral Microbiol Immunol 2006;21:201–205.
  61. Mäkinen KK, Alanen P, Isokangas P, Isotupa K, Söderling E, Mäkinen PL, Wang W, Weijian W, Xiaochi C, Wei Y, Zhang B: Thirty-nine-month xylitol chewing-gum programme in initially 8-year old school children: a feasibility study focusing on mutans streptococci and lactobacilli. Int J Dent 2008;58:41–50.
  62. Scheinin A, Mäkinen KK: Turku Sugar Studies I–XXI. Acta Odontol Scand 1975;33 (suppl 70):1–351.
  63. Scheinin A, Mäkinen KK, Ylitalo K: Turku Sugar Studies V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol Scand 1975;33(suppl 70):67–104.
  64. Galiullin AN: Evaluation of the caries-preventive action of xylitol. Kazan Med J 1981;67:16–18 (in Russian).
  65. Kandelman D, Bär A, Hefti A: Collaborative WHO field study in French Polynesia. I. Baseline prevalence and 32-month caries increment. Caries Res 1988;22:55–62.
  66. Scheinin A, Bánóczy J, Szöke J, Esztári I, Pienihäkkinen K, Scheinin U, Tiekso J, Zimmermann P, Hadas E: Collaborative WHO xylitol field studies in Hungary. I. Three-year caries activity in institutionalized children. Acta Odontol Scand 1985;43:327–347.
  67. Scheinin A, Pienihäkkinen K, Tiekso J, Bánóczy J, Szöke J, Esztári I, Zimmermann P, Hadas E: Collaborative WHO xylitol field studies in Hungary. VII. Two-year caries incidence in 976 institutionalized children. Acta Odontol Scand 1985;43:381–387.
  68. Kandelman D, Gagnon G: A 24-month clinical study of the incidence and progression of dental caries in relation to consumption of chewing gum containing xylitol in school preventive programs. J Dent Res 1990;69:1771–1775.
  69. Isokangas P, Alanen P, Tiekso J, Mäkinen KK: Xylitol chewing gum in caries prevention: a field study in children. J Am Dent Assoc 1988;117:315–320.
  70. Sintes JL, Escalante C, Stewart B, McCool JJ, García L, Volpe AR, Triol C: Enhanced anticaries efficacy of a 0.243% sodium fluoride/xylitol/silica dentifrice: 3-year clinical results. Am J Dent 1995;8:231–235.
  71. Sintes JL, Elías-Boneta A, Stewart B, Volpe AR, Lovett J: Anticaries efficacy of a sodium monofluorophosphate dentifrice containing xylitol in a dicalcium phosphate dihydrate base. A 30-month caries clinical study in Costa Rica. Am J Dent 2002;15:215–219.
  72. Mäkinen KK, Bennett CA, Hujoel PP, Isokangas PJ, Isotupa KP, Pape HR Jr, Mäkinen PL: Xylitol gums and caries rates: a 40- month cohort study. J Dent Res 1995;74:1904–1913.
  73. Mäkinen KK, Hujoel PP, Bennett CA, Isotupa KP, Mäkinen PL, Allen P: Polyol chewing gums and caries rates in primary dentition: A 24-month cohort study. Caries Res 1996;30:408–417.
  74. Mäkinen KK, Pemberton D, Mäkinen PL, Chen CY, Cole J, Hujoel PP, Lopatin D, Lambert P: Polyol-combinant saliva stimulants and oral health in Veterans Affairs patients – an exploratory study. Spec Care Dentist 1996;16:104–115.
  75. Alanen P, Isokangas P, Gutmann K: Xylitol candies in caries prevention: results of a field study in Estonian children. Community Dent Oral Epidemiol 2000;28:218–224.
  76. Isokangas P, Söderling E, Pienihäkkinen K, Alanen P: Occurrence of dental decay in children after maternal consumption of xylitol chewing gum. J Dent Res 2000;79:1885–1889.
  77. Machiulskiene V, Nyvad B, Baelum V: Caries-preventive effect of sugar-substituted chewing gum. Community Dent Oral Epidemiol 2001;29:278–288.
  78. Hayes C: Xylitol gum decreases the decayed, missing, and filled surfaces (DMFS) score over a 3-year period by an average of 1.9. J Evid Based Dent Pract 2002;2:14–15.

    External Resources

  79. Thorild I, Lindau B, Twetman S: Effect of maternal use of chewing gums containing xylitol, chlorhexidine or fluoride on mutans streptococci colonization in the mothers’ infant children. Oral Health Prevent Dent 2003;1:53–57.

    External Resources

  80. Thorild I, Lindau B, Twetman S: Caries in 4-year-old children after maternal chewing of gums containing combinations of xylitol, sorbitol, chlorhexidine, and fluoride. Eur Arch Pediatr Dent 2006;7:241–245.
  81. Honkala E, Honkala S, Shyama M, Al-Mutawa SA: Field trial on caries prevention with xylitol candies among disabled school students. Caries Res 2006;40:508–513.
  82. Aaltonen AS, Suhonen JT, Tenovuo J, Inkilä-Saari I: Efficacy of a slow-release device containing fluoride, xylitol and sorbitol in preventing infant caries. Acta Odontol Scand 2000;58:285–292.
  83. Hausen H, Seppä L, Poutanen R, Niinimaa A, Lahti S, Kärkkäinen S, Pietilä I: Noninvasive control of dental caries in children with active initial lesions. A randomized clinical trial. Caries Res 2007;41:384–391.
  84. Isokangas P, Tiekso J, Alanen P, Mäkinen KK: Long-term effect of xylitol on dental caries. Community Dent Oral Epidemiol 1989;17:200–203.
  85. Isokangas P, Tenovuo J, Söderling E, Männistö H, Mäkinen KK:. Dental caries and mutans streptococci in the proximal areas of molars affected by the habitual use of xylitol chewing gum. Caries Res 1991;25:444–448.
  86. Isokangas P, Mäkinen KK, Tiekso J, Alanen P: Long-term effect of xylitol chewing gum in the prevention of dental caries: a follow-up 5 years after termination of a prevention program. Caries Res 1993;27:495–498.
  87. Virtanen JI, Bloigu RS, Larmas MA: Timing of first restorations before, during, and after a preventive xylitol trial. Acta Odontol Scand 1996;54:211–216.
  88. Mäkinen KK, Hujoel PP, Bennett CA, Isokangas P, Isotupa K, Pape HR Jr, Mäkinen PL: A descriptive report of the effects of a 16-month xylitol chewing-gum programme subsequent to a 40-month sucrose gum programme. Caries Res 1998;32:107–112.
  89. Hujoel PP, Mäkinen KK, Bennett CA, Isotupa KP, Isokangas PJ, Allen P, Mäkinen PL: The optimum time to initiate habitual xylitol gum-chewing for obtaining long-term caries prevention. J Dent Res 1999;78:797–803.
  90. Leach SA, Green RM: Effect of xylitol-supplemented diets on the progression and regression of fissure caries in the albino rat. Caries Res 1980;14:16–23.
  91. Shyu KW, Hsu MY: The cariogenicity of xylitol, mannitol, sorbitol, and sucrose. Proc Natl Sci Counc ROC 1980;4:21–26.
  92. Havenaar R, Huis in‘t Veld JHJ, de Stoppelaar JD, Backer Dirks O: Anti-cariogenic and remineralizing properties of xylitol in combination with sucrose in rats inoculated with Streptococcus mutans. Caries Res 1984;18:269–277.
  93. Nakai Y, Shinga-Ishihara C, Kaji M, Moriya K, Murakami-Yamanaka K, Takimura M: Xylitol gum and maternal transmission of mutans streptococci. J Dent Res 2010;89:56–60.
  94. Raunhardt O, Ritzel G: Xylitol-clinical investigations in humans. Int J Vitam Nutr Res 1982(suppl 22):5–88.
  95. US Department of Health and Human Services. Health aspects of sugar alcohols and lactose (Report prepared for Food Safety and Applied Nutrition, Food and Drug Administration. Contract No. FDA 223-83-2020). Life Sciences Research Office, FASEB, Bethesda, 1986.
  96. World Health Organization: Evaluation of certain food additives and contaminants. Twenty-seventh Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Tech Rep Ser 1983;696:23–34, 45.
  97. Mäkinen KK: Dietary prevention of dental caries by xylitol – clinical effectiveness and safety. J Appl Nutr 1992;44:16–28.
  98. Hamilton IR, Ellwood DC: Effects of fluoride on carbohydrate metabolism by washed cells of Streptococcus mutans grown at various pH values in a chemostat. Infect Immun 1978;19:434–442.
  99. Arends J, Smits M, Ruben JL, Christoffersen J: Combined effect of xylitol and fluoride on enamel demineralization in vitro. Caries Res 1990;24:256–257.
  100. Luoma H, Murtomaa H, Nuuja T, Nyman A, Nummikoski P, Ainamo J, Luoma AR: A simultaneous reduction of caries and gingivitis in a group of schoolchildren receiving chlorhexidine-fluoride applications. Results after 2 years. Caries Res 1978;12:290–298.
  101. Meurman JH: Ultrastructure, growth and adherence of Streptococcus mutans after treatment with chlorhexidine and fluoride. Caries Res 1988;22:283–287.
  102. Rogers AH, Bert AG: Effects of xylitol and fluoride on the response to glucose pulses of Streptococcus mutans T8 growing in continuous culture. Oral Microbiol Immunol 1992;7:124–126.
  103. Maehara H, Iwami Y, Mayanagi H, Takahashi N: Synergistic inhibition of fluoride and xylitol on glycolysis by mutans streptococci and its biochemical mechanism. Caries Res 2005;39:521–528.
  104. Petin VG, Kim JK, Kritsky RO, Komarova LN: Mathematical description, optimization and prediction of synergistic interaction of fluoride and xylitol. Chemosphere 2008;72:844–849.
  105. Kim SS, Kim S, Kim E, Hyun B, Kim KK, Lee BJ: Synergistic inhibitory effect of cationic and antimicrobial agents on the growth of oral streptococci. Caries Res 2003;37:425–430.
  106. Decker EM, Maier G, Axmann D, Brecx M, von Ohle C: Effect of xylitol/chlorhexidine versus xylitol or chlorhexidine as single rinses on initial biofilm formation of cariogenic streptococci. Quintessence Int 2008;39:17–22.
  107. Han SJ, Jeong SY, Nam YJ, Yang KH, Lim HS, Chung J: Xylitol inhibits inflammatory cytokine expression induced by lipopolysaccharide from Porphyromonas gingivalis. Clin Diagn Lab Immunol 2005;12:1285–1291.
  108. Eisenberg AD, Young DA, Fanhsu J, Spitz LM: Interactions of sanguinarine and zinc on oral streptococci and Actinomyces species. Caries Res 1991;25:185–190.
  109. Drake DR, Grigsby W, Cardenzana A, Dunkerson D: Synergistic, growth-inhibitory effects of chlorhexidine and copper combinations on Streptococcus mutans,Actinomycesviscosus, and Actinomyces näslundi. J Dent Res1993;72:524–528.
  110. Klepek YS, Volke M, Konrad KR, Wippel K, Hoth S, Hedrich R, Sauer N: Arabidopsis thaliana polyol/monosaccharide transporters1 and 2: fructose and xylitol/H+ symporters in pollen and xylem cells. J Exp Bot 2010;61:537–550.
  111. Mäkinen KK: Public endorsement and use of xylitol for caries prevention with special reference to Finnish Health Centre programmes. Finn Dent J 2006;13(suppl 1):66–75.
  112. Turtola L: A trial of adding xylitol chewing gum to a part of university students’ meals. Fin Stud Health Serv Treatises 1990;30 (in Finnish with English summary).
  113. Murtomaa H, Vuopio T, Turtola L: The use of xylitol chewing gum in oral health Promotion for Finnish students. Health Promotion Int 1993;8:271–274.
  114. Nordblad A, Suominen-Taipale L, Murtomaa H, Vartiainen E, Koskela K: Smart Habit Xylitol Campaign, a new approach in oral health promotion. Community Dent Health 1995;12:230–234.
  115. Kovari H, Pienihäkkinen K, Alanen P: The use of xylitol chewing gum in kindergartens. A follow-up study in Savonlinna, Finland. Acta Odontol Scand 2003;61:367–370.
  116. Honkala E, Rimpelä A, Karvonen S, Rimpelä M: Chewing of xylitol gum – a well adopted practice among Finnish adolescents. Caries Res 1996;30:34–39.
  117. Honkala S, Honkala E, Tynjälä J, Kannas L: Use of xylitol chewing gum among Finnish schoolchildren. Acta Odontol Scand 1999;57:306–309.
  118. Slack GL, Millward E, Martin WJ: The effect of tablets stimulating salivary flow on the incidence of dental caries. Br Dent J 1964;116:105–108.
  119. Möller IJ, Poulsen S: The effect of sorbitol-containing chewing gum on the incidence of dental caries, plaque and gingivitis in Danish schoolchildren. Community Dent Oral Epidemiol 1973;1:58–67.
  120. Frostell G, Blomlöf L, Blomqvist T, Dahl GM, Edward S, Fjellström Å, Henrikson CO, Larje O, Nord CE, Nordenvall KJ: Substituiton of sucrose by Lycasin® in candy. ‘The Roslagen study’. Acta Odontol Scand 1974;32:235–254.
  121. Bánóczy J, Hadas É, Esztári I, Marosi I, Fözy L, Szántó S: Dreijährige Erfahrungen mit Sorbit im klinischen Längsschnitt-Versuch. Kariesprophylaxe 1980:2;39–46.
  122. Glass RL: A two-year clinical trial of sorbitol chewing gum. Caries Res 1983:17;365–368.
  123. Szöke J, Bánóczy J, Proskin HM: Effecet of after-meal sucrose-free gum chewing on clinical caries. J Dent Res 2001;80:1725–1729.
  124. Kawanabe J, Hirasawa M, Takeuchi T, Oda T, Ikeda T: Noncariogenicity of erythritol as a substrate. Caries Res 1992;26:358–362.
  125. Mäkinen KK, Isotupa KP, Kivilompolo T, Mäkinen PL, Toivanen J, Söderling E: Comparison of erythritol and xylitol saliva stimulants in the control of dental plaque and mutans streptococci. Caries Res 2001;35:129–135.
  126. Mäkinen KK, Isotupa KP, Kivilompolo T, Mäkinen PL, Murtomaa S, Petäjä J, Toivanen J, Söderling E: The effect of polyol-combinant saliva stimulants on S. mutans levels in plaque and saliva of patients with mental retardation. Spec Care Dentist 2002;22:187–193.
  127. Mäkinen KK, Saag M, Isotupa KP, Olak J, Nõmmela R, Söderling E, Mäkinen PL: Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res 2005;39:207–215.
  128. Mäkinen KK: Xylitol-associated remineralization of caries lesions. Oralprophylaxe Kinderzahnheilk 2009;31:66–75.
  129. Burt BA: The use of sorbitol- and xylitol-sweetened chewing gum in caries control. J Am Dent Assoc 2006;137:190–196.
  130. Deshpande A, Jadad AR: The impact of polyol-containing chewing gums on dental caries: a systematic review of original randomized controlled trials and observational studies. J Am Dent Assoc 2008;139:1602–1614.
  131. Milgrom P, Ly KA, Rothen M: Xylitol and its vehicles for public health needs. Adv Dent Res 2009;21:44–47.

 goto top of outline Author Contacts

Prof. Kauko K. Mäkinen
Institute of Dentistry, University of Turku
Lemminkäisenkatu 2
FI–20520 Turku (Finland)
Tel. +358 40 5561 063, E-Mail kauko.makinen@uusikaupunki.fi


 goto top of outline Article Information

Received: June 10, 2010
Accepted: December 26, 2010
Published online: May 11, 2011
Number of Print Pages : 18
Number of Figures : 6, Number of Tables : 8, Number of References : 131


 goto top of outline Publication Details

Medical Principles and Practice (International Journal of the Kuwait University Health Sciences Centre)

Vol. 20, No. 4, Year 2011 (Cover Date: May 2011)

Journal Editor: Owunwanne A. (Kuwait), Benov L. (Kuwait)
ISSN: 1011-7571 (Print), eISSN: 1423-0151 (Online)

For additional information: http://www.karger.com/MPP


Open Access License / Drug Dosage / Disclaimer

Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Abstract

Introduction: Dental caries is a diet-associated disease which continues to be a serious health problem in most industrialized and developing countries. Strategies to maximize caries prevention should automatically consider the use of sugar substitutes. It is important that public health authorities are made cognizant of the availability of new polyol-type sugar substitutes. Review Summary: Clinical studies have shown that xylitol, a natural, physiologic sugar alcohol of the pentitol type, can be used as a safe and effective caries-limiting sweetener. Habitual use of xylitol-containing food and oral hygiene adjuvants has been shown to reduce the growth of dental plaque, to interfere with the growth of caries-associated bacteria, to decrease the incidence of dental caries, and to be associated with remineralization of caries lesions. Numerous public regulatory bodies have endorsed the use of xylitol as a caries-limiting agent. Other sugar alcohols that have been successfully used as sugar substitutes include D-glucitol (sorbitol), which, however, owing to its hexitol nature, normally has no strong effect on the mass and adhesiveness of bacterial plaque and on the growth of mutans streptococci. A tetritol-type alditol, erythritol, has shown potential as a non-cariogenic sugar substitute. Combinations of xylitol and erythritol may reduce the incidence of caries more effectively than either alditol alone. Conclusions: Partial sugar substitution with polyols is an important dietary tool in the prevention of dental caries that should be used to enhance existing fluoride-based caries prevention programmes. The most effective method of conveying this information to the public is through a proper health claim for these alditols in food labelling. The present review summarizes clinical and biochemical aspects of the above three dietary polyols and emphasizes the role of sugar substitution as a potential health-promoting strategy.



 goto top of outline Author Contacts

Prof. Kauko K. Mäkinen
Institute of Dentistry, University of Turku
Lemminkäisenkatu 2
FI–20520 Turku (Finland)
Tel. +358 40 5561 063, E-Mail kauko.makinen@uusikaupunki.fi


 goto top of outline Article Information

Received: June 10, 2010
Accepted: December 26, 2010
Published online: May 11, 2011
Number of Print Pages : 18
Number of Figures : 6, Number of Tables : 8, Number of References : 131


 goto top of outline Publication Details

Medical Principles and Practice (International Journal of the Kuwait University Health Sciences Centre)

Vol. 20, No. 4, Year 2011 (Cover Date: May 2011)

Journal Editor: Owunwanne A. (Kuwait), Benov L. (Kuwait)
ISSN: 1011-7571 (Print), eISSN: 1423-0151 (Online)

For additional information: http://www.karger.com/MPP


Open Access License / Drug Dosage

Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) (www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Glinsmann WH, Irausquin H, Park YK: Evaluation of health aspects of sugars contained in carbohydrate sweeteners. Report of Sugars Task Force. J Nutr 1986;116:S1–S216.
  2. US Department of Health and Human Services. The Surgeon General’s report on nutrition and health. DHHS (PHS) Publ 1988, No 88–50211.
  3. Milgrom P, Zero DT, Tanzer JM: An examination of the advances in science technology of prevention of tooth decay in young children since the Surgeon General’s Report on Oral Health. Acad Pediatr 2009;9:404–409.
  4. Mäkinen KK: Sugar alcohols, caries incidence, and remineralization of caries lesions: a literature review. Int J Dent 2010;2010:981072.

    External Resources

  5. Ammons MC, Ward LS, Fisher ST, Wolcott RD, James GA: In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. Int J Antimicrob Agents 2009;33:230–236.
  6. Hildebrandt GH, Sparks BS: Maintaining mutans streptococci suppression with xylitol chewing gum. J Am Dent Assoc 2000;131:909–916.
  7. Georgieff M, Moldawer LL, Bistrian BR, Blackburn GL: Xylitol, an energy source for intra-venous nutrition after trauma. J Parenter Enteral Nutr 1985;9:199–209.
  8. Bässler KH, Prellwitz W, Unbehaun V, Lang K: Xylitstoffwechsel beim Menschen: zur Frage der Eignung von Xylit als Zucker-Ersatz beim Diabetiker. Klin Wochenschr 1962;40:791–793.
  9. Natah SS, Hussien KR, Tuominen JA, Koivisto VA: Metabolic response to lactitol and xylitol in healthy men. Am J Clin Nutr 1997;65:947–950.
  10. Assouline G, Danon A: Hyperosmotic xylitol, prostaglandins and gastric mucosal barrier. Prostaglandin Med 1981;7:63–70.
  11. Palchun VT, Aslamazova VI, Buyanovskaya OA, Polyakova TS: Employment of xylit for intralabyrinthine hydropsy detection. Vestn Otorinolaringol 1982;4:35–38 (in Russian).

    External Resources

  12. Palchun VT: Diagnostic informativity of the drugs used to reveal intralabyrinthine hydrops according to the data of audiologic and biochemical studies. Zh Ushn Nos Gorl Bolezn 1983;43:27–31 (in Russian).
  13. Bruyland M, Ebinger G: Beneficial effect of a treatment with xylitol in a patient with myoadenylate deaminase deficiency. Clin Neuropharmacol 1994;17:492–493.
  14. Van Eys J, Wang YM, Chan S, Tanphaichitr VS, King SM: Xylitol as a therapeutic agent in glucose-6-phosphate dehydrogenase deficiency; in Sipple HL, McNutt KW (eds): Sugars in Nutrition. New York, Academic Press, 1974, pp 613–631.
  15. Zimmermann HG, Gerlach E: Stimulation of myocardial adenine biosynthesis by pentoses and pentitols. Pflügers Arch 1978;376:223.
  16. Mäkinen KK: Biochemical Principles of the Use of Xylitol in Medicine and Nutrition with Special Consideration of Dental Aspects. Basel, Birkhäuser, 1978 (also Experientia Suppl 1978;30:1–160).
  17. Smith JT: Effect of xylitol feeding on the mixed function oxidase system. Nutr Rep Int 1982;26:347–353.
  18. Touissant W, Roggenkamp K, Bässler KH: Behandlung der Ketonämie im Kindesalter mit Ksylit. Z Kinderheilk 1967;98:146–154.
  19. Mäkinen KK: Can the pentitol-hexitol theory explain the clinical observations made with xylitol? Med Hypotheses 2000;54:603–613.
  20. Rofe AM, Krishnan R, Bais R, Edwards JB, Conyers EAJ: A mechanism for the thiamine-sparing action of dietary xylitol in the rat. Aust J Exp Biol Med Sci 1982;60:101–111.
  21. Quadflieg KH, Brand K: Carbon and hydrogen metabolism of xylitol and various sugars in human erythrocytes. Hoppe-Seyler’s Z Physiol Chem 1978;359:29–36.
  22. Ukab WA, Sato J, Wang YM, van Eys J: Xylitol mediated amelioration of acetylphenylhydrazine-induced hemolysis in rabbits. Metabolism 1981;30:1053–1059.
  23. Uhari M, Kontiokari T, Koskela M, Niemelä M: Xylitol chewing gum in prevention of acute otitis media: double blind randomised trial. Br Med J 1996;313:1180–1184.
  24. Uhari M, Kontiokari T, Niemelä M: A novel use of xylitol sugar in preventing acute otitis media. Pediatrics 1998;102:879–884.
  25. Uhari M, Tapiainen T, Kontiokari T: Xylitol in preventing acute otitis media. Vaccine 2000;19(suppl 1):S144–S147.
  26. Kontiokari T, Svanberg M, Mattila P, Leinonen M, Uhari M: Quantitative analysis of the effect of xylitol on pneumococcal nasal colonisation in rats. FEMS Microbiol Lett 1999;178:313–317.
  27. Zabner J, Seiler MP, Launspach JL, Karp PH, Kearney WR, Look DC, Smith JJ, Welsh MJ: The osmolyte xylitol reduces the salt concentration of airway surface liquid and may enhance bacterial killing. Proc Natl Acad Sci USA 2000;97:11614–11619.
  28. Abolhassani M, Wertz X, Pooya M, Chaumet-Riffaud P, Guais A, Schwartz L: Hyperosmolarity causes inflammation through the methylation of protein phosphatase 2A. Inflamm Res 2008;57:419–429.
  29. Ambudkar SV, Maloney PC: Bacterial anion exchange. Use of osmolytes during solubilization and reconstitution of phosphate-linked antiport from Streptococcus lactis. J Biol Chem 1986;261:10079–10086.
  30. Katsuyama M, Kobayashi Y, Ichikawa H, Mizuno A, Miyachi Y, Matsunaga K, Kawashima M: A novel method to control the balance of skin microflora. 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci 2005;38:207–213.
  31. Yoshimura N, Yamada H, Haraguchi M: Anti-arrhythmic effect of xylitol during anesthesia. Masui 1979;28:841–848 (in Japanese with English summary).
  32. Vainshtein SG, Pivikova MI, Maksudova D: Xylitol action on the gastric secretion and the external secretory function of the pancreas in patients with duodenal ulcer. Vopr Pitan 1973;1:14–17 (in Russian).
  33. Sato J, Wang YM, van Eys J: Metabolism of xylitol and glucose in rats bearing hepatocellular carcinomas. Cancer Res 1981;41:3192–3199.
  34. Takahashi K, Mashiko T, Akiba Y: Effect of dietary concentration of xylitol on growth in male broiler chicks during immunological stress. Poult Sci 2000;79:743–747.
  35. Sood C, Khan S, O’Brien PJ: Phenylenediamine induced hepatocytes cytotoxicity redox. Cycling mediated oxidative stress without oxygen activation. Biochim Biophys Acta 1997;1335:343–352
  36. Dowd SE, Sun Y, Smith E, Kennedy JP, Jones CE, Wolcott R: Effects of biofilm treatments on the multi-species Lubbock chronic wound biofilm model. J Wound Care 2009;18:508–512.
  37. Faraji H, Lindsay RC: Characterization of antioxidant activity of sugars and polyhydric alcohols in fish oil emulsions. J Agric Food Chem 2004;52:7164–7171.
  38. Mäkinen KK, Söderling E: Effect of xylitol on some food-spoilage microorganisms. J Food Sci 1981;46:950–951.
  39. Kwon NH, Kim SH, Kim JY, Lim JY, Kim JM, Jung WK, Park KT, Bae WK, Noh KM, Choi JW, Hur J, Park YH: Antimicrobial performance of alkaline ionic fluid (GC-100X) and its ability to remove Escherichia coli O157:H7 from the surface of tomatoes. J Food Protect 2003;66:1604–1610.
  40. Guo Q, Tang W, Inagaki Y, Kokudo N, Sugawara Y, Karako H, Nakata M, Makuuchi M: Subcellular localization of KL-6 mucin in colorectal carcinoma cell lines: association with metastatic potential and cell morphology. Oncol Rep 2007;17:1057–1060.
  41. Mäkinen KK, Hämäläinen M, Tuori M, Poutiainen E: A polyol mixture in the diet of dairy cows. Nutr Rep Int 1981;23:1077–1087.
  42. Poutiainen E, Tuori M, Sirviö I: The fermentation of polyalcohols by rumen microbes in vitro. Proc Nutr Soc 1976;35:140A–141A.
  43. Korhonen H, Rintamäki O, Antila M, Tuori M, Poutiainen E: A polyol mixture or molasses treated beet pulp in the silage based diet of diary cows. II. The effect on the lactoperoxidase and thiocyanate content of milk and the udder health. J Sci Agric Soc Finl 1977; 49:330–345.
  44. Hamada T, Ishii T, Taguchi S: Blood changes of spontaneously ketotic cows before and after four hours after administration of glucose, xylitol, 1,2-propanediol, or magnesium propionate. J Dairy Sci 1982;65:1509–1513.
  45. Sakai T, Hamakawa M, Kubo S: Glucose and xylitol tolerance tests for ketotic and healthy dairy cows. J Dairy Sci 1996;79:372–377.
  46. Mizutani H, Sako T, Toyoda Y, Fukuda H, Urumuhang N, Koyama H, Hirose H: The intravenous xylitol tolerance test in non-lactating cattle. Vet Res Commun 2003;27:633–641.
  47. Toyoda Y, Sako T, Mizutani H, Sugiyama M, Hayakawa N, Hasegawa H, Hirose H: A bolus infusion of xylitol solution in the treatment of cow ketosis does not cause a surge in insulin secretion. J Vet Med Sci 2008;70:1091–1093.
  48. Näsi M, Alaviuhkola T: Polyol mixture supplementation in the diet of breeding sows and piglets. J Sci Agric Soc Finl 1980;52:50–58.

    External Resources

  49. Näsi M, Alaviuhkola T: Polyol mixture supplementation as a sweetener and/or feed additive in the diet of piglets. J Sci Agric Soc Finl 1981;53:57–63.
  50. Tanzer J: Xylitol chewing gum and dental caries. Int Dent J 1995;45(suppl 1):65–76.
  51. Trahan L: Xylitol: a review of its action on mutans streptococci and dental plaque – its clinical significance. Int Dent J 1955;45 (suppl 1):77–92.
  52. Mäkinen KK: The rocky road of xylitol to its clinical application. J Dent Res 2000;79:1352–1355.
  53. Mäkinen KK: New biochemical aspects of sweeteners. Int Dent J 1985;35:23–35.
  54. Tuompo H, Meurman J, Lounatmaa K, Linkola J: Effect of xylitol and other carbon sources on the cell wall of Streptococcus mutans. Scand J Dent Res 1983;91:17–25.
  55. Lee YE, Choi YH, Jeong SH, Kim HS, Lee SH, Song KB: Morphological changes in Streptococcus mutans after chewing gum containing xylitol for twelve months. Curr Microbiol 2009;58:332–337.
  56. Mäkinen KK, Scheinin A: Turku sugar studies VII. Principal biochemical findings on whole saliva and plaque. Acta Odontol Scand 1975;33(suppl 70):129–171.
  57. Rölla G, Oppermann RV, Bowen WH, Ciardi JE, Knox WH: High amounts of lipoteichoic acids in sucrose-induced plaque in vivo. Caries Res 1980;14:235–238.
  58. Mäkinen KK: Latest dental studies on xylitol and mechanism of action of xylitol in caries limitation; in Grenby TH (ed): Progress in Sweeteners. London, Elsevier Applied Science, 1989, pp 331–362.
  59. Tanzer JM, Thompson A, Wen ZT, Burne RA: Streptococcus mutans: fructose transport, xylitol resistance, and virulence. J Dent Res 2006;85:369–373.
  60. Miyasawa-Hori H, Aizawa S, Takahashi N: Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism. Oral Microbiol Immunol 2006;21:201–205.
  61. Mäkinen KK, Alanen P, Isokangas P, Isotupa K, Söderling E, Mäkinen PL, Wang W, Weijian W, Xiaochi C, Wei Y, Zhang B: Thirty-nine-month xylitol chewing-gum programme in initially 8-year old school children: a feasibility study focusing on mutans streptococci and lactobacilli. Int J Dent 2008;58:41–50.
  62. Scheinin A, Mäkinen KK: Turku Sugar Studies I–XXI. Acta Odontol Scand 1975;33 (suppl 70):1–351.
  63. Scheinin A, Mäkinen KK, Ylitalo K: Turku Sugar Studies V. Final report on the effect of sucrose, fructose and xylitol diets on the caries incidence in man. Acta Odontol Scand 1975;33(suppl 70):67–104.
  64. Galiullin AN: Evaluation of the caries-preventive action of xylitol. Kazan Med J 1981;67:16–18 (in Russian).
  65. Kandelman D, Bär A, Hefti A: Collaborative WHO field study in French Polynesia. I. Baseline prevalence and 32-month caries increment. Caries Res 1988;22:55–62.
  66. Scheinin A, Bánóczy J, Szöke J, Esztári I, Pienihäkkinen K, Scheinin U, Tiekso J, Zimmermann P, Hadas E: Collaborative WHO xylitol field studies in Hungary. I. Three-year caries activity in institutionalized children. Acta Odontol Scand 1985;43:327–347.
  67. Scheinin A, Pienihäkkinen K, Tiekso J, Bánóczy J, Szöke J, Esztári I, Zimmermann P, Hadas E: Collaborative WHO xylitol field studies in Hungary. VII. Two-year caries incidence in 976 institutionalized children. Acta Odontol Scand 1985;43:381–387.
  68. Kandelman D, Gagnon G: A 24-month clinical study of the incidence and progression of dental caries in relation to consumption of chewing gum containing xylitol in school preventive programs. J Dent Res 1990;69:1771–1775.
  69. Isokangas P, Alanen P, Tiekso J, Mäkinen KK: Xylitol chewing gum in caries prevention: a field study in children. J Am Dent Assoc 1988;117:315–320.
  70. Sintes JL, Escalante C, Stewart B, McCool JJ, García L, Volpe AR, Triol C: Enhanced anticaries efficacy of a 0.243% sodium fluoride/xylitol/silica dentifrice: 3-year clinical results. Am J Dent 1995;8:231–235.
  71. Sintes JL, Elías-Boneta A, Stewart B, Volpe AR, Lovett J: Anticaries efficacy of a sodium monofluorophosphate dentifrice containing xylitol in a dicalcium phosphate dihydrate base. A 30-month caries clinical study in Costa Rica. Am J Dent 2002;15:215–219.
  72. Mäkinen KK, Bennett CA, Hujoel PP, Isokangas PJ, Isotupa KP, Pape HR Jr, Mäkinen PL: Xylitol gums and caries rates: a 40- month cohort study. J Dent Res 1995;74:1904–1913.
  73. Mäkinen KK, Hujoel PP, Bennett CA, Isotupa KP, Mäkinen PL, Allen P: Polyol chewing gums and caries rates in primary dentition: A 24-month cohort study. Caries Res 1996;30:408–417.
  74. Mäkinen KK, Pemberton D, Mäkinen PL, Chen CY, Cole J, Hujoel PP, Lopatin D, Lambert P: Polyol-combinant saliva stimulants and oral health in Veterans Affairs patients – an exploratory study. Spec Care Dentist 1996;16:104–115.
  75. Alanen P, Isokangas P, Gutmann K: Xylitol candies in caries prevention: results of a field study in Estonian children. Community Dent Oral Epidemiol 2000;28:218–224.
  76. Isokangas P, Söderling E, Pienihäkkinen K, Alanen P: Occurrence of dental decay in children after maternal consumption of xylitol chewing gum. J Dent Res 2000;79:1885–1889.
  77. Machiulskiene V, Nyvad B, Baelum V: Caries-preventive effect of sugar-substituted chewing gum. Community Dent Oral Epidemiol 2001;29:278–288.
  78. Hayes C: Xylitol gum decreases the decayed, missing, and filled surfaces (DMFS) score over a 3-year period by an average of 1.9. J Evid Based Dent Pract 2002;2:14–15.

    External Resources

  79. Thorild I, Lindau B, Twetman S: Effect of maternal use of chewing gums containing xylitol, chlorhexidine or fluoride on mutans streptococci colonization in the mothers’ infant children. Oral Health Prevent Dent 2003;1:53–57.

    External Resources

  80. Thorild I, Lindau B, Twetman S: Caries in 4-year-old children after maternal chewing of gums containing combinations of xylitol, sorbitol, chlorhexidine, and fluoride. Eur Arch Pediatr Dent 2006;7:241–245.
  81. Honkala E, Honkala S, Shyama M, Al-Mutawa SA: Field trial on caries prevention with xylitol candies among disabled school students. Caries Res 2006;40:508–513.
  82. Aaltonen AS, Suhonen JT, Tenovuo J, Inkilä-Saari I: Efficacy of a slow-release device containing fluoride, xylitol and sorbitol in preventing infant caries. Acta Odontol Scand 2000;58:285–292.
  83. Hausen H, Seppä L, Poutanen R, Niinimaa A, Lahti S, Kärkkäinen S, Pietilä I: Noninvasive control of dental caries in children with active initial lesions. A randomized clinical trial. Caries Res 2007;41:384–391.
  84. Isokangas P, Tiekso J, Alanen P, Mäkinen KK: Long-term effect of xylitol on dental caries. Community Dent Oral Epidemiol 1989;17:200–203.
  85. Isokangas P, Tenovuo J, Söderling E, Männistö H, Mäkinen KK:. Dental caries and mutans streptococci in the proximal areas of molars affected by the habitual use of xylitol chewing gum. Caries Res 1991;25:444–448.
  86. Isokangas P, Mäkinen KK, Tiekso J, Alanen P: Long-term effect of xylitol chewing gum in the prevention of dental caries: a follow-up 5 years after termination of a prevention program. Caries Res 1993;27:495–498.
  87. Virtanen JI, Bloigu RS, Larmas MA: Timing of first restorations before, during, and after a preventive xylitol trial. Acta Odontol Scand 1996;54:211–216.
  88. Mäkinen KK, Hujoel PP, Bennett CA, Isokangas P, Isotupa K, Pape HR Jr, Mäkinen PL: A descriptive report of the effects of a 16-month xylitol chewing-gum programme subsequent to a 40-month sucrose gum programme. Caries Res 1998;32:107–112.
  89. Hujoel PP, Mäkinen KK, Bennett CA, Isotupa KP, Isokangas PJ, Allen P, Mäkinen PL: The optimum time to initiate habitual xylitol gum-chewing for obtaining long-term caries prevention. J Dent Res 1999;78:797–803.
  90. Leach SA, Green RM: Effect of xylitol-supplemented diets on the progression and regression of fissure caries in the albino rat. Caries Res 1980;14:16–23.
  91. Shyu KW, Hsu MY: The cariogenicity of xylitol, mannitol, sorbitol, and sucrose. Proc Natl Sci Counc ROC 1980;4:21–26.
  92. Havenaar R, Huis in‘t Veld JHJ, de Stoppelaar JD, Backer Dirks O: Anti-cariogenic and remineralizing properties of xylitol in combination with sucrose in rats inoculated with Streptococcus mutans. Caries Res 1984;18:269–277.
  93. Nakai Y, Shinga-Ishihara C, Kaji M, Moriya K, Murakami-Yamanaka K, Takimura M: Xylitol gum and maternal transmission of mutans streptococci. J Dent Res 2010;89:56–60.
  94. Raunhardt O, Ritzel G: Xylitol-clinical investigations in humans. Int J Vitam Nutr Res 1982(suppl 22):5–88.
  95. US Department of Health and Human Services. Health aspects of sugar alcohols and lactose (Report prepared for Food Safety and Applied Nutrition, Food and Drug Administration. Contract No. FDA 223-83-2020). Life Sciences Research Office, FASEB, Bethesda, 1986.
  96. World Health Organization: Evaluation of certain food additives and contaminants. Twenty-seventh Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Tech Rep Ser 1983;696:23–34, 45.
  97. Mäkinen KK: Dietary prevention of dental caries by xylitol – clinical effectiveness and safety. J Appl Nutr 1992;44:16–28.
  98. Hamilton IR, Ellwood DC: Effects of fluoride on carbohydrate metabolism by washed cells of Streptococcus mutans grown at various pH values in a chemostat. Infect Immun 1978;19:434–442.
  99. Arends J, Smits M, Ruben JL, Christoffersen J: Combined effect of xylitol and fluoride on enamel demineralization in vitro. Caries Res 1990;24:256–257.
  100. Luoma H, Murtomaa H, Nuuja T, Nyman A, Nummikoski P, Ainamo J, Luoma AR: A simultaneous reduction of caries and gingivitis in a group of schoolchildren receiving chlorhexidine-fluoride applications. Results after 2 years. Caries Res 1978;12:290–298.
  101. Meurman JH: Ultrastructure, growth and adherence of Streptococcus mutans after treatment with chlorhexidine and fluoride. Caries Res 1988;22:283–287.
  102. Rogers AH, Bert AG: Effects of xylitol and fluoride on the response to glucose pulses of Streptococcus mutans T8 growing in continuous culture. Oral Microbiol Immunol 1992;7:124–126.
  103. Maehara H, Iwami Y, Mayanagi H, Takahashi N: Synergistic inhibition of fluoride and xylitol on glycolysis by mutans streptococci and its biochemical mechanism. Caries Res 2005;39:521–528.
  104. Petin VG, Kim JK, Kritsky RO, Komarova LN: Mathematical description, optimization and prediction of synergistic interaction of fluoride and xylitol. Chemosphere 2008;72:844–849.
  105. Kim SS, Kim S, Kim E, Hyun B, Kim KK, Lee BJ: Synergistic inhibitory effect of cationic and antimicrobial agents on the growth of oral streptococci. Caries Res 2003;37:425–430.
  106. Decker EM, Maier G, Axmann D, Brecx M, von Ohle C: Effect of xylitol/chlorhexidine versus xylitol or chlorhexidine as single rinses on initial biofilm formation of cariogenic streptococci. Quintessence Int 2008;39:17–22.
  107. Han SJ, Jeong SY, Nam YJ, Yang KH, Lim HS, Chung J: Xylitol inhibits inflammatory cytokine expression induced by lipopolysaccharide from Porphyromonas gingivalis. Clin Diagn Lab Immunol 2005;12:1285–1291.
  108. Eisenberg AD, Young DA, Fanhsu J, Spitz LM: Interactions of sanguinarine and zinc on oral streptococci and Actinomyces species. Caries Res 1991;25:185–190.
  109. Drake DR, Grigsby W, Cardenzana A, Dunkerson D: Synergistic, growth-inhibitory effects of chlorhexidine and copper combinations on Streptococcus mutans,Actinomycesviscosus, and Actinomyces näslundi. J Dent Res1993;72:524–528.
  110. Klepek YS, Volke M, Konrad KR, Wippel K, Hoth S, Hedrich R, Sauer N: Arabidopsis thaliana polyol/monosaccharide transporters1 and 2: fructose and xylitol/H+ symporters in pollen and xylem cells. J Exp Bot 2010;61:537–550.
  111. Mäkinen KK: Public endorsement and use of xylitol for caries prevention with special reference to Finnish Health Centre programmes. Finn Dent J 2006;13(suppl 1):66–75.
  112. Turtola L: A trial of adding xylitol chewing gum to a part of university students’ meals. Fin Stud Health Serv Treatises 1990;30 (in Finnish with English summary).
  113. Murtomaa H, Vuopio T, Turtola L: The use of xylitol chewing gum in oral health Promotion for Finnish students. Health Promotion Int 1993;8:271–274.
  114. Nordblad A, Suominen-Taipale L, Murtomaa H, Vartiainen E, Koskela K: Smart Habit Xylitol Campaign, a new approach in oral health promotion. Community Dent Health 1995;12:230–234.
  115. Kovari H, Pienihäkkinen K, Alanen P: The use of xylitol chewing gum in kindergartens. A follow-up study in Savonlinna, Finland. Acta Odontol Scand 2003;61:367–370.
  116. Honkala E, Rimpelä A, Karvonen S, Rimpelä M: Chewing of xylitol gum – a well adopted practice among Finnish adolescents. Caries Res 1996;30:34–39.
  117. Honkala S, Honkala E, Tynjälä J, Kannas L: Use of xylitol chewing gum among Finnish schoolchildren. Acta Odontol Scand 1999;57:306–309.
  118. Slack GL, Millward E, Martin WJ: The effect of tablets stimulating salivary flow on the incidence of dental caries. Br Dent J 1964;116:105–108.
  119. Möller IJ, Poulsen S: The effect of sorbitol-containing chewing gum on the incidence of dental caries, plaque and gingivitis in Danish schoolchildren. Community Dent Oral Epidemiol 1973;1:58–67.
  120. Frostell G, Blomlöf L, Blomqvist T, Dahl GM, Edward S, Fjellström Å, Henrikson CO, Larje O, Nord CE, Nordenvall KJ: Substituiton of sucrose by Lycasin® in candy. ‘The Roslagen study’. Acta Odontol Scand 1974;32:235–254.
  121. Bánóczy J, Hadas É, Esztári I, Marosi I, Fözy L, Szántó S: Dreijährige Erfahrungen mit Sorbit im klinischen Längsschnitt-Versuch. Kariesprophylaxe 1980:2;39–46.
  122. Glass RL: A two-year clinical trial of sorbitol chewing gum. Caries Res 1983:17;365–368.
  123. Szöke J, Bánóczy J, Proskin HM: Effecet of after-meal sucrose-free gum chewing on clinical caries. J Dent Res 2001;80:1725–1729.
  124. Kawanabe J, Hirasawa M, Takeuchi T, Oda T, Ikeda T: Noncariogenicity of erythritol as a substrate. Caries Res 1992;26:358–362.
  125. Mäkinen KK, Isotupa KP, Kivilompolo T, Mäkinen PL, Toivanen J, Söderling E: Comparison of erythritol and xylitol saliva stimulants in the control of dental plaque and mutans streptococci. Caries Res 2001;35:129–135.
  126. Mäkinen KK, Isotupa KP, Kivilompolo T, Mäkinen PL, Murtomaa S, Petäjä J, Toivanen J, Söderling E: The effect of polyol-combinant saliva stimulants on S. mutans levels in plaque and saliva of patients with mental retardation. Spec Care Dentist 2002;22:187–193.
  127. Mäkinen KK, Saag M, Isotupa KP, Olak J, Nõmmela R, Söderling E, Mäkinen PL: Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Caries Res 2005;39:207–215.
  128. Mäkinen KK: Xylitol-associated remineralization of caries lesions. Oralprophylaxe Kinderzahnheilk 2009;31:66–75.
  129. Burt BA: The use of sorbitol- and xylitol-sweetened chewing gum in caries control. J Am Dent Assoc 2006;137:190–196.
  130. Deshpande A, Jadad AR: The impact of polyol-containing chewing gums on dental caries: a systematic review of original randomized controlled trials and observational studies. J Am Dent Assoc 2008;139:1602–1614.
  131. Milgrom P, Ly KA, Rothen M: Xylitol and its vehicles for public health needs. Adv Dent Res 2009;21:44–47.