Table of Contents
To view the fulltext, log-in or choose pay-per-view options:
Get Access

Mass Transfer Limitations in Embryoid Bodies during Human Embryonic Stem Cell Differentiation

Van Winkle A.P.a, b · Gates I.D.b · Kallos M.S.a, b
aPharmaceutical Production Research Facility (PPRF), and bDepartment of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alta., Canada Cells Tissues Organs 2012;196:34–47 (DOI:10.1159/000330691)


Due to their ability to differentiate into cell types from all the three germ layers and their potential unlimited capacity for expansion, embryonic stem cells have tremendous potential to treat diseases and injuries. Spontaneous differentiation of human embryonic stem cells (hESCs) is influenced by the size of the differentiating embryoid bodies (EBs). To further understand the dynamics between nutrient mass transfer, EB size, and stem cell differentiation, a transient mass diffusion model of a single hESC EB was constructed. The results revealed that the oxygen concentration at the centers of large EBs (400-µm radius) was 50% lower when compared to that in smaller EBs (200-µm radius). In addition, the concentration profile of cytokines within an EB depended strongly on their depletion rate, with higher depletion rates resulting in cytokine concentrations that varied significantly throughout the EB. A comparison of the results of our model with published experimental data reveals a close correlation between the fraction of cells that differentiate to a given lineage and the fraction of cells exposed to different oxygen or cytokine concentrations. This, along with other data from the literature, suggests that diffusive mass transfer influences the differentiation of hESCs within EBs by controlling the spatial distribution of soluble factors. This has important implications for research involving the differentiation of embryonic stem cells in EBs, as well as for bioprocess design and the development of robust differentiation protocols where mass transfer could be altered to control the cell differentiation trajectory.


Individual Users: Register with Karger Login Information

Please create your User ID & Password

Contact Information

I have read the Karger Terms and Conditions and agree.

Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50