Journal Mobile Options
Table of Contents
Vol. 5, No. 3, 2012
Issue release date: November 2012
J Nutrigenet Nutrigenomics 2012;5:117–131
(DOI:10.1159/000339951)

Copy Number Polymorphism of the Salivary Amylase Gene: Implications in Human Nutrition Research

Santos J.L. · Saus E. · Smalley S.V. · Cataldo L.R. · Alberti G. · Parada J. · Gratacòs M. · Estivill X.
aDepartment of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, and bInstituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Universidad Austral de Chile, Valdivia, Chile; cGenes and Diseases Program, Centre for Genomic Regulation and dUniversidad Pompeu Fabra, Barcelona, and eCIBER en Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

The salivary α-amylase is a calcium-binding enzyme that initiates starch digestion in the oral cavity. The α-amylase genes are located in a cluster on the chromosome that includes salivary amylase genes (AMY1), two pancreatic α-amylase genes (AMY2A and AMY2B) and a related pseudogene. The AMY1 genes show extensive copy number variation which is directly proportional to the salivary α-amylase content in saliva. The α-amylase amount in saliva is also influenced by other factors, such as hydration status, psychosocial stress level, and short-term dietary habits. It has been shown that the average copy number of AMY1 gene is higher in populations that evolved under high-starch diets versus low-starch diets, reflecting an intense positive selection imposed by diet on amylase copy number during evolution. In this context, a number of different aspects can be considered in evaluating the possible impact of copy number variation of the AMY1 gene on nutrition research, such as issues related to human diet gene evolution, action on starch digestion, effect on glycemic response after starch consumption, modulation of the action of α-amylases inhibitors, effect on taste perception and satiety, influence on psychosocial stress and relation to oral health.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Pedersen AM, Bardow A, Jensen SB, Nauntofte B: Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis 2002;8:117–129.
  2. Emmelin N: Nerve interactions in salivary glands. J Dent Res 1978;66:509–517.
  3. Amado F, Lobo MJC, Domingues P, Alberto, Duarte JA, Vitorino R: Salivary peptidomics. Exp Rev Proteomics 2010;7:709–721.
  4. Frayn KN: Metabolic Regulation. A Human Perspective, ed 3. Wiley-Blackwell, 2010.
  5. Samuelson LC, Wiebauer K, Gumucio DL, Meisler MH: Expression of the human amylase genes: recent origin of a salivary amylase promoter from an actin pseudogene. Nucl Acid Res 1988;16:8261–8268.
  6. McGeachin RL, Akin JR: Amylase levels in the tissues and body fluids of several primate species. Comp Biochem Physiol A Comp Physiol 1982;72:267–269.
  7. Samuelson LC, Phillips RS, Swanberg LJ: Amylase gene structures in primates: retroposon insertions and promoter evaluation. Mol Biol Evol 1996;13:767–779.
  8. Ramasubbu N, Paloth V, Luo Y, Brayer GD, Levine MJ: Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr D Biol Crystallogr 1996;52:435–446.
  9. Redon R, Ishikawa S, Fitch KR, Feuk L, Perry GH, Andrews TD, Fiegler H, Shapero MH, Carson AR, Chen W, Cho EK, Dallaire S, Freeman JL, González JR, Gratacòs M, Huang J, Kalaitzopoulos D, Komura D, MacDonald JR, Marshall CR, Mei R, Montgomery L, Nishimura K, Okamura K, Shen F, Somerville MJ, Tchinda J, Valsesia A, Woodwark C, Yang F, Zhang J, Zerjal T, Zhang J, Armengol L, Conrad DF, Estivill X, Tyler-Smith C, Carter NP, Aburatani H, Lee C, Jones KW, Scherer SW, Hurles ME: Global variation in copy number in the human genome. Nature 2006;444:444–454.
  10. Estivill X, Armengol L: Copy number variants and common disorders: filling the gaps and exploring complexity in genome-wide association studies. PLoS Genet 2007;3:e190.

    External Resources

  11. Hastings PJ, Lupski JR, Rosenberg SM, Ira G: Mechanisms of change in gene copy number. Nat Rev Genet 2009;10:551–564.
  12. Bruder CE, Piotrowski A, Gijsbers AA, Andersson R, Erickson S, Diaz de Ståhl T, Menzel U, Sandgren J, von Tell D, Poplawski A, Crowley M, Crasto C, Partridge EC, Tiwari H, Allison DB, Komorowski J, van Ommen GJ, Boomsma DI, Pedersen NL, den Dunnen JT, Wirdefeldt K, Dumanski JP: Phenotypically concordant and discordant monozygotic twins display different DNA copy-number-variation profiles. Am J Hum Genet 2008;82:1–9.

    External Resources

  13. Piotrowski A, Bruder CE, Andersson R, Diaz de Ståhl T, Menzel U, Sandgren J, Poplawski A, von Tell D, Crasto C, Bogdan A, Bartoszewski R, Bebok Z, Krzyzanowski M, Jankowski Z, Partridge EC, Komorowski J, Dumanski JP: Somatic mosaicism for copy number variation in differentiated human tissues. Hum Mutat 2008;29:1118–1124.
  14. Armengol L, Villatoro S, González JR, Pantano L, García-Aragonés M, Rabionet R, Cáceres M, Estivill X: Identification of copy number variants defining genomic differences among major human groups. PLoS One 2009 30;4:e7230.

    External Resources

  15. Gamazon ER, Nicolae DL, Cox NJ: A study of CNVs as trait-associated polymorphisms and as expression quantitative trait loci. PLoS Genet 2011;7:e1001292.
  16. The Wellcome Trust Case Control Consortium: Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 2010;464:713–720.

    External Resources

  17. Leuchs ER: Wirkung des Speichels auf Stärke (Effect of saliva on starch). Annalen der Physik 1831;98:623.

    External Resources

  18. Merritt AD, Rivas ML, Bixler D, Newell R: Salivary and pancreatic amylase: electrophoretic characterizations and genetic studies. Am J Hum Genet 1973;25:510–519.
  19. Meisler MH, Ting CN: The remarkable evolutionary history of the human amylase genes. Crit Rev Oral Biol Med 1993;4:503–509.
  20. Perry GH, Dominy NJ, Claw KG, Lee AS, Fiegler H, Redon R, Werner J, Villanea FA, Mountain JL, Misra R, Carter NP, Lee C, Stone AC: Diet and the evolution of human amylase gene copy number variation. Nat Genet 2007;39:1256–1260.
  21. Sudmant PH, Kitzman JO, Antonacci F, Alkan C, Malig M, Tsalenko A, Sampas N, Bruhn L, Shendure J; 1000 Genomes Project, Eichler EE: Diversity of human copy number variation and multicopy genes. Science 2010;330:641–646.
  22. Carter NP: As normal as normal can be? Nat Genet 2004;36:931–932.
  23. Dhar S: Measuring human salivary amylase copy number variation. MRes thesis. University of Nottingham, 2010.
  24. Mandel AL, Breslin PAS: High endogenous salivary amylase activity is associated with improved glycemic homeostasis following starch ingestion in adults. J Nutr 2012;142:853–858.
  25. Vega J, Cubillos G, Cataldo LR, Perry GH, Santos JL: Identificación de la subespecie y localización geográfica de un chimpancé del Zoológico Nacional del Parque Metropolitano de Santiago mediante el analisis del ADN mitocondrial. Congreso de la Asociación Latinoamericana de Parques Zoológicos y Acuarios. Santiago (Chile), 2010.
  26. Schwartz S, Elnitski L, Li M, Weirauch M, Riemer C, Smit A; NISC Comparative Sequencing Program, Green ED, Hardison RC, Miller W: MultiPipMaker and supporting tools: alignments and analysis of multiple genomic DNA sequences. Nucl Acid Res 2003;31:3518–3524.
  27. Pfaffl MW: A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 2001;29:e45.
  28. Bland JM, Altman DG: Statistics notes: measurement error. BMJ 1996;313:744.
  29. Obregón AM, Amador P, Valladares M, Weisstaub G, Burrows R, Santos JL: Melanocortin 3 receptor gene variants: association with childhood obesity and eating behavior in Chilean families. Nutrition 2010;26:760–765.
  30. Gaunt TR, Rodriguez S, Guthrie PA, Day IN: An expectation-maximization program for determining allelic spectrum from CNV data (CoNVEM): insights into population allelic architecture and its mutational history. Hum Mutat 2010;31:414–420.
  31. Mandel AL, Peyrot des Gachons C, Plank KL, Alarcon S, Breslin PA: Individual differences in AMY1 gene copy number, salivary alpha-amylase levels, and the perception of oral starch. PLoS One 2010;5:e13352.

    External Resources

  32. Cassidy A, Bingham SA, Cummings JH: Starch intake and colorectal cancer risk: an international comparison. Br J Cancer 1994;69:937–942.
  33. Bright-See E, Jazmaji V: Estimation of the amount of dietary starch available to different populations. Can J Physiol Pharmacol 1991;69:56–59.
  34. USDA, Center for Nutrition Policy and Promotion: Nutrient Content of the US Food Supply. Washington, DC, 2005. US Government Printing Office, 2008. Home Economics Research Report No. 58.
  35. Patin E, Quintana-Murci L: Demeter’s legacy: rapid changes to our genome imposed by diet. Trends Ecol Evol 2008;23:56–59.
  36. Behringer V, Deschner T, Möstl E, Selzer D, Hohmann G: Stress affects salivary alpha-amylase activity in bonobos. Physiol Behav 2012;105:476–482.
  37. Quezada-Calvillo R, Robayo-Torres CC, Opekun AR, Sen P, Ao Z, Hamaker BR, QuaroniA, Brayer GD, Wattler S, Nehls MC, Sterchi EE, Nichols BL: Contribution of mucosal maltase-glucoamylase activities to mouse small intestinal starch alpha-glucogenesis. J Nutr 2007;137:1725–1733.
  38. Hoebler C, Karinthi A, Devaux MF, Guillon F, Gallant DJ, Bouchet B, Melegari C, Barry JL: Physical and chemical transformations of cereal food during oral digestion in human subjects. Br J Nutr 1998;80:429–436.
  39. Nichols BL, Quezada-Calvillo R, Robayo-Torres CC, Ao Z, Hamaker BR, Butte NF, Marini J, Jahoor F, Sterchi EE: Mucosal maltase-glucoamylase plays a crucial role in starch digestion and prandial glucose homeostasis of mice. J Nutr 2009;139:684–690.
  40. Ao Z, Quezada-Calvillo R, Sim L, Nichols BL, Rose DR, Sterchi EE, Hamaker BR: Evidence of native starch degradation with human small intestinal maltase-glucoamylase (recombinant). FEBS Lett 2007;581:2381–2388.
  41. Bowman BA, Russell RM (eds): Present Knowledge in Nutrition, ed 9. Washington, ILSI Press, 2006.
  42. Skude G, Ihse I: Salivary amylase in duodenal aspirates. Scand J Gastroenterol 1976;11:17–20.
  43. Rosenblum JL, Irwin CL, Alpers DH: Starch and glucose oligosaccharides protect salivary-type amylase activity at acid pH. Am J Physiol 1988;254:G775–G780.
  44. Fried M, Abramson S, Meyer JH: Passage of salivary amylase trough the stomach in humans. Dig Dis Sci 1987;32:1097–1103.
  45. Parada J, Aguilera JM: In vitro digestibility and glycemic response of potato starch is related to granule size and degree of gelatinization. J Food Sci 2009;74:E34–E38.
  46. Parada J, Aguilera JM: Review: starch matrices and the glycemic response. Food Sci Technol Int 2011;17:187–204.
  47. Read NW, Welch IM, Austen CJ, Barnish C, Bartlett CE, Baxter AJ, Brown G, Compton ME, Hume KE, Storie I, et al: Swallowing food without chewing; a simple way to reduce postprandial glycaemia. Br J Nutr 1986;55:43–41.
  48. Fogel MR, Gray GM: Starch hydrolysis in man: an intraluminal process not requiring membrane digestion. J Appl Physiol 1973;35:263–267.
  49. Suzuki H, Fukushima M, Okamoto S, Takahashi O, Shimbo T, Kurose T, Yamada Y, Inagaki N, Seino Y, Fukui T: Effects of thorough mastication on postprandial plasma glucose concentrations in nonobese Japanese subjects. Metabolism 2005;54:1593–1599.
  50. Ahrén B, Holst JJ: The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes 2001;50:1030–1038.
  51. Sales PM, Souza PM, Simeoni LA, Silveira D: α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J Pharm Pharm Sci 2012;15:141–183.

    External Resources

  52. Layer P, Carlson GL, DiMagno EP: Partially purified white bean amylase inhibitor reduces starch digestion in vitro and inactivates intraduodenal amylase in humans. Gastroenterology 1985;88:1895–1902.
  53. Clissold SP, Edwards C: Acarbose. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 1988;35:214–243.
  54. Barrett ML, Udani JK: A proprietary alpha-amylase inhibitor from white bean (Phaseolus vulgaris): a review of clinical studies on weight loss and glycemic control. Nutr J 2011;10:24.

    External Resources

  55. LoPiparo E, Scheib H, Frei N, Williamson G, Grigorov M, Chou CJ: Flavonoids for controlling starch digestion: structural requirements for inhibiting human α-amylase. J Med Chem 2008;51:3555–3561.
  56. Ramirez I: Chemoreception for an insoluble nonvolatile substance: starch taste? Am J Physiol 1991;260:R192–R199.
  57. Parker K, Salas M, Nwosu VC: High fructose corn syrup: production, uses and public health concerns. Biotechnol Mol Biol 2010;5:71–78.
  58. Breslin PA, Beauchamp GK, Pugh EN Jr: Monogeusia for fructose, glucose, sucrose, and maltose. Percept Psychophys 1996;58:327–341.
  59. Vigues S, Dotson CD, Munger SD: The receptor basis of sweet taste in mammals. Results Probl Cell Differ 2009;47:187–202.
  60. Engelen L, van den Keybus PA, de Wijk RA, Veerman EC, Amerongen AV, Bosman F, Prinz JF, van der Bilt A: The effect of saliva composition on texture perception of semi-solids. Arch Oral Biol 2007;52:518–525.
  61. Harthoorn LF, Dransfield E: Periprandial changes of the sympathetic-parasympathetic balance related to perceived satiety in humans. Eur J Appl Physiol 2008:102:601–608.

    External Resources

  62. Juvonen KR, Purhonen AK, Salmenkallio-Marttila M, Lähteenmäki L, Laaksonen DE, Herzig KH, Uusitupa MI, Poutanen KS, Karhunen LJ: Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J Nutr 2009;139:461–466.
  63. Zijlstra N, Mars M, de Wijk RA, Westerterp-Plantenga MS, Holst JJ, de Graaf C: Effect of viscosity on appetite and gastro-intestinal hormones. Physiol Behav 2009;97:68–75.
  64. Li J, Zhang N, Hu L, Li Z, Li R, Li C, Wang S: Improvement in chewing activity reduces energy intake in one meal and modulates plasma gut hormone concentrations in obese and lean young Chinese men. Am J Clin Nutr 2011;94:709–716.
  65. Santos JL, Ho-Urriola JA, González A, Smalley SV, Domínguez-Vásquez P, Cataldo R, Obregón AM, Amador P, Weisstaub G, Hodgson MI: Association between eating behavior scores and obesity in Chilean children. Nutr J 2011;10:108.

    External Resources

  66. Chatterton RT Jr, Vogelsong KM, Lu YC, Ellman AB, Hudgens GA: Salivary alpha-amylase as a measure of endogenous adrenergic activity. Clin Physiol 1996;16:433–448.
  67. Rohleder N, Nater UM, Wolf JM, Ehlert U, Kirschbaum C: Psychosocial stress-induced activation of salivary alpha amylase: an indicator of sympathetic activity? Ann NY Acad Sci 2004;1032:258–263.
  68. Nater UM, Rohleder N: Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology 2009;34:486–496.
  69. Baum BJ: Neurotransmitter control of secretion. J Dent Res 1987;66:628–632.
  70. Bosch JA, Veerman EC, de Geus EJ, Proctor GB: α-Amylase as a reliable and convenient measure of sympathetic activity: don’t start salivating just yet! Psychoneuroendocrinology 2011;36:449–453.
  71. Engert V, Vogel S, Efanov SI, Duchesne A, Corbo V, Ali N, Pruessner JC: Investigation into the cross-correlation of salivary cortisol and alpha-amylase responses to psychological stress. Psychoneuroendocrinology 2011;36:1294–1302.
  72. Klein MI, DeBaz L, Agidi S, Lee H, Xie G, Lin AH, Hamaker BR, Lemos JA, Koo H: Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development. PLoS One 2010;5:e13478.
  73. Stephen A, Alles M, de Graaf C, Fleith M, Hadjilucas E, Isaacs E, Maffeis C, Zeinstra G, Matthys C, Gil A: The role and requirements of digestible dietary carbohydrates in infants and toddlers. Eur J Clin Nutr 2012;66:765–779.
  74. Lingstrom P, van Houte J, Kashket S: Food starches and dental caries. Crit Rev Oral Biol Med 2000;11:366–380.
  75. Beighton D, Hayday H: The establishment of the bacterium Streptococcus mutans in dental plaque and the induction of caries in macaque monkeys (Macaca fascicularis) fed a diet containing cooked-wheat flour. Arch Oral Biol 1984;29:369–372.
  76. Thurnheer T, Giertsen E, Gmür R, Guggenheim B: Cariogenicity of soluble starch in oral in vitro biofilm and experimental rat caries studies: a comparison. J Appl Microbiol 2008;105:829–836.
  77. Aires CP, Del Bel Cury AA, Tenuta LM, Klein MI, Koo H, Duarte S, Cury JA: Effect of starch and sucrose on dental biofilm formation and on root dentine demineralization. Caries Res 2008;42:380–386.
  78. Firestone AR, Schmid R, Muhlemann HR: Cariogenic effects of cooked wheat starch alone or with sucrose and frequency-controlled feedings in rats. Arch Oral Biol 1982;27:759–763.
  79. Scannapieco F, Torres G, Levine MJ: Salivary α-amylase: role in dental plaque and caries formation. Criti Rev Oral Biol Med 1993;4:301–307.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50