Journal Mobile Options
Table of Contents
Vol. 51, No. 3, 2014
Issue release date: August 2014
J Vasc Res 2014;51:175-189
(DOI:10.1159/000360765)

Mitochondrial Mechanisms in Cerebral Vascular Control: Shared Signaling Pathways with Preconditioning

Busija D.W. · Katakam P.V.
Department of Pharmacology, Tulane University School of Medicine, New Orleans, La., USA

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Mitochondrial-initiated events protect the neurovascular unit against lethal stress via a process called preconditioning, which independently promotes changes in cerebrovascular tone through shared signaling pathways. Activation of adenosine triphosphate (ATP)-dependent potassium channels on the inner mitochondrial membrane (mitoKATP channels) is a specific and dependable way to induce protection of neurons, astroglia, and cerebral vascular endothelium. Through the opening of mitoKATP channels, mitochondrial depolarization leads to activation of protein kinases and transient increases in cytosolic calcium (Ca2+) levels that activate terminal mechanisms that protect the neurovascular unit against lethal stress. The release of reactive oxygen species from mitochondria has similar protective effects. Signaling elements of the preconditioning pathways also are involved in the regulation of vascular tone. Activation of mitoKATP channels in cerebral arteries causes vasodilation, with cell-specific contributions from the endothelium, vascular smooth muscles, and nerves. Preexisting chronic conditions, such as insulin resistance and/or diabetes, prevent preconditioning and impair relaxation to mitochondrial-centered responses in cerebral arteries. Surprisingly, mitochondrial activation after anoxic or ischemic stress appears to protect cerebral vascular endothelium and promotes the restoration of blood flow; therefore, mitochondria may represent an important, but underutilized target in attenuating vascular dysfunction and brain injury in stroke patients. © 2014 S. Karger AG, Basel



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Busija DW, Lacza Z, Rajapakse N, Shimizu K, Kis B, Bari F, Domoki F, Horiguchi T: Targeting mitochondrial ATP-sensitive potassium channels - a novel approach to neuroprotection. Brain Res Rev 2004;46:282-294.
  2. Duckles SP, Krause DN: Cerebrovascular effects of oestrogen: multiplicity of action. Clin Exp Pharmacol Physiol 2007;34:801-808.
  3. Katakam PVG, Gordon A, Venkata NLRS, Rutkai I, Busija DW: Diversity of mitochondrial-dependent dilator mechanisms in vascular smooth muscle of cerebral arteries from normal and insulin resistant rats. Am J Physiol, in press.
  4. McBride HM, Neuspiel M, Wasiak S: Mitochondria: more than just a powerhouse. Curr Biol 2006;16:R551-R560.
  5. Wappler EA, Institoris A, Dutta S, Katakam PV, Busija DW: Mitochondrial dynamics associated with oxygen-glucose deprivation in rat primary neuronal cultures. PLoS One 2013;8:e63206.
  6. Halestrap AP: The mitochondrial permeability transition: its molecular mechanism and role in reperfusion injury. Biochem Soc Symp 1999;66:181-203.

    External Resources

  7. Kubli DA, Gustafsson ÅB: Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 2012;111:1208-1221.
  8. Dromparis P, Sutendra G, Michelakis ED: The role of mitochondria in pulmonary vascular remodeling. J Mol Med (Berl) 2010;88:1003-1010.
  9. Groschner LN, Waldeck-Weiermair M, Malli R, Graier WF: Endothelial mitochondria - less respiration, more integration. Pflugers Arch 2012;464:63-76.
  10. Kluge MA, Fetterman JL, Vita JA: Mitochondria and endothelial function. Circ Res 2013;12:1171-1188.
  11. Widlansky ME, Gutterman DD: Regulation of endothelial function by mitochondrial reactive species. Antioxid Redox Signal 2011;15:1517-1530.
  12. McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S: From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 2013;50:357-371.
  13. Jonckheere AI, Smeitink JA, Rodenburg RJ: Mitochondrial ATP synthase: architecture, function and pathology. J Inherit Metab Dis 2012;35:211-225.
  14. Davidson SM: Endothelial mitochondria and heart disease. Cardiovasc Res 2010;88:58-66.
  15. Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RA, Cochemé HM, Murphy MP, Dominiczak AF: Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 2009;54:322-328.
  16. Kalyanaraman B: Oxidative chemistry of fluorescent dyes: implications in the detection of reactive oxygen and nitrogen species. Biochem Soc Trans 2011;39:1221-1225.
  17. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M: Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000;404:787-790.
  18. Dröse S, Brandt U: Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv Exp Med Biol 2012;748:145-169.
  19. Walker JE: The ATP synthase: the understood, the uncertain and the unknown. Biochem Soc Trans 2013;41:1-16.
  20. Dorn GW, Scorrano L: Two close, too close: sarcoplasmic reticulum-mitochondrial crosstalk and cardiomyocyte fate. Circ Res 2010;107:689-699.
  21. Duckles SP, Krause DN: Mechanisms of cerebrovascular protection: oestrogen, inflammation and mitochondria. Acta Physiol 2011;203:149-154.
  22. Zick M, Rabl R, Reichert AS: Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 2008;1793:5-19.
  23. Hill BG, Benavides GA, Lancaster JR Jr, Ballinger S, Dell'Italia L, Jianhua Z, Darley-Usmar VM: Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol Chem 2012;93:1485-1512.
  24. Chalmers S, Saunter C, Wilson C, Coats P, Girkin JM, McCarron JG: Mitochondrial motility and vascular smooth muscle proliferation. Arterioscler Thromb Vasc Biol 2012;32:3000-3011.
  25. Chalmers S, Olson ML, MacMillan D, Rainbow RD, McCarron JG: Ion channels in smooth muscle: regulation by the sarcoplasmic reticulum and mitochondria. Cell Calcium 2007;42:447-466.
  26. Dai J, Kuo KH, Leo JM, van Breemen C, Lee CH: Rearrangement of the close contact between the mitochondria and the sarcoplasmic reticulum in airway smooth muscle. Cell Calcium 2005;37:333-340.
  27. Daiber A: Redox signaling (cross-talk) from and to mitochondria involves mitochondrial pores and reactive oxygen species. Biochim Biophys Acta 2010;1797:897-906.
  28. Ghezzi D, Zeviani M: Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv Exp Med Biol 2012;748:65-106.
  29. Lenaz G, Genova ML: Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 2010;12:961-1008.
  30. Lacza Z, Snipes JA, Zhang J, Horvath EM, Figureroa JP, Szabo C, Busija DW: Lack of mitochondrial nitric oxide production in the brain. J Neurochem 2004;90:942-951.
  31. Lacza Z, Pankotai E, Csordas A, Gero D, Kiss L, Horvath EM, Kollai M, Busija DW, Szabo C: Mitochondrial NO and reactive nitrogen species production: does mtNOS exist? Nitric Oxide 2006;14:162-168.
  32. Katakam PV, Wappler E, Katz P, Rutkai I, Institoris A, Domoki F, Gáspár T, Grovenburg SM, Snipes JA, Busija DW: Depolarization of mitochondria in endothelial cells promotes cerebral vascular vasodilation by activation of nitric oxide synthase. Arterioscler Thromb Vasc Biol 2013;33:752-759.
  33. Meng W, Tobin JR, Busija DW: Glutamate-induced cerebral vasodilation is mediated by nitric oxide through N-methyl-D-aspartate receptors. Stroke 1995;26:857-862.
  34. Lacza Z, Kozlov AV, Pankotai E, Csordas A, Wolf G, Redl H, Kollai M, Szbo C, Busija DW, Horn TFW: Mitochondria produce reactive nitrogen species via an arginine-independent pathway. Free Radic Res 2006;40:369-378.
  35. Förstermann U: Nitric oxide and oxidative stress in vascular disease. Pflugers Arch 2010;459:923-939.
  36. Gaspar T, Snipes JA, Busija AR, Kis B, Domoki F, Bari F, Busija DW: ROS-independent preconditioning in neurons via activation of mitoKATP channels by BMS-191095. J Cereb Blood Flow Metab 2008;28:1090-1103.
  37. Rajapakse N, Kis B, Horiguchi T, Snipes J, Busija D: Diazoxide pretreatment induces delayed preconditioning in astrocytes against oxygen glucose deprivation and hydrogen peroxide-induced toxicity. J Neurosci Res 2003;73:206-214.
  38. Han D, William E, Cadenas E: Mitochondrial respiratory chain-dependent generation of superoxide anion and its release into the intermembrane space. Biochem J 2001;353:411-416.
  39. Yang W, Hekimi S: A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans. PLoS Biol 2010;8: e1000556.
  40. Votyakova TV, Reynolds IJ: DeltaPsi(m)-dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 2001;79:266-277.
  41. Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS: Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochim Biophys Acta 2013;1827:598-611.
  42. Muller FL, Liu Y, Van Remmem H: Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem 2004;279:49064-49073.
  43. Jastroch M, Divakaruni AS, Mookerjee S, Treberg JR, Brand MD: Mitochondrial proton and electron leaks. Essays Biochem 2010;47:53-67.
  44. Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, Jahn TP: Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 2007;282:1183-1192.
  45. Calamita G, Ferri D, Gena P, Liquori GE, Cavalier A, Thomas D, Svelto M: The inner mitochondrial membrane has aquaporin-8 water channels and is highly permeable to water. J Biol Chem 2005;280:17149-17153.
  46. Marchissio MJ, Francés DE, Carnovale CE, Marinelli RA: Mitochondrial aquaporin-8 knockdown in human hepatoma HepG2 cells causes ROS-induced mitochondrial depolarization and loss of viability. Toxicol Appl Pharmacol 2012;64:246-254.
  47. Quinlan CL, Perevoschikova IV, Goncalves RL, Hey-Mogensen M, Brand MD: The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. Methods Enzymol 2013;526:189-217.
  48. Zhang DX, Gutterman DD: Mitochondrial reactive oxygen species-mediated signaling in endothelial cells. Am J Physiol Heart Circ Physiol 2007;292:H2023-H2031.
  49. Rajapakse N, Shimizu K, Snipes J, Lacza Z, Busija D: Activation of mitochondrial ATP-sensitive potassium channels prevents neuronal cell death after ischemia in neonatal rats. Neurosci Lett 2002;327:208-212.
  50. Lu B, Poirier C, Gaspar T, Gratzke C, Harrison W, Busija D, Matsuk M, Andersson KE, Overbeek PA, Bishop CE: A mutation in the inner mitochondrial membrane peptidase 2-like gene (Immp2l) affects mitochondrial function and impairs fertility in mice. Biol Reprod 2008;78:601-610.
  51. Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW: Myocardial preconditioning against ischemia-reperfusion is abolished in Zucker obese rats with insulin. Am J Physiol Regul Integr Comp Physiol 2007;292:R920-R926.
  52. Katakam PV, Domoki F, Snipes JA, Busija AR, Jarajapu YP, Busija DW: Impaired mitochondria-dependent vasodilation in cerebral arteries of Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol 2009;296:R289-R298.
  53. Brown KA, Didion SP, Andresen JJ, Faraci FM: Effects of aging, MnSOD deficiency, and genetic background on endothelial function: evidence for MnSOD haploinsufficiency. Arterioscler Thromb Vasc Biol 2007;27:1941-1946.
  54. Pung YF, Sam WJ, Hardwick JP, Yin L, Ohanyan V, Logan S, Di Vincenzo L, Chilian WM: The role of mitochondrial bioenergetics and reactive oxygen species in coronary collateral growth. Am J Physiol Heart Circ Physiol 2013;305:H1275-H1280.
  55. Han D, Antunes F, Canali R, Rettori D, Cadenas E: Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 2003;278:5557-5563.
  56. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI: Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 2010;107:106-116.
  57. Zinkevich NS, Gutterman DD: ROS-induced ROS release in vascular biology: redox-redox signaling. Am J Physiol Heart Circ Physiol 2011;301:H647-H653.
  58. Nazarewicz RR, Dikalova AE, Bikineyeva A, Dikalov SI: Nox2 as a potential target of mitochondrial superoxide and its role in endothelial oxidative stress. Am J Physiol Heart Circ Physiol 2013;305:H1131-H1140.
  59. Chrissobolis S, Faraci FM: Sex differences in protection against angiotensin II-induced endothelial dysfunction by manganese superoxide dismutase in the cerebral circulation. Hypertension 2010;55:905-910.
  60. Miller JD, Peotta VA, Chu Y, Weiss RM, Zimmerman K, Brooks RM, Heistad DD: MnSOD protects against COX1-mediated endothelial dysfunction in chronic heart failure. Am J Physiol Heart Circ Physiol 2010;298:H1600-H1607.
  61. Ardehali H, O'Rourke B: Mitochondrial K(ATP) channels in cell survival and death. J Mol Cell Cardiol 2005;39:7-163.
  62. Foster DB, Ho AS, Rucker J, Garlid AO, Chen L, Sidor A, Garlid KD, O'Rourke B: Mitochondrial ROMK channel is a molecular component of mitoK(ATP). Circ Res 2012;111:446-454.
  63. Seharaseyon J, Ohler A, Sasaki N, Fraser H, Sato T, Johns DC, O'Rourke B, Marbán E: Molecular composition of mitochondrial ATP-sensitive potassium channels probed by viral Kir gene transfer. J Mol Cell Cardiol 2000;32:1923-1930.
  64. Lacza Z, Snipes JA, Kis B, Szabo C, Grover G, Busija DW: Investigation of the subunit composition and the pharmacology of the mitochondrial ATP-dependent K+ channel in the brain. Brain Res 2003;19:27-36.
  65. Lacza Z, Snipes JA, Miller AW, Czabo C, Grover G, Busija DW: Heart mitochondria contain functional ATP-dependent K+ channels. J Mol Cell Cardiol 2003;35:1339-1347.
  66. Rines AK, Bayeva M, Ardehali H: A new pROM king for the mitoKATP dance: ROMK takes the lead. Circ Res 2012;111:392-393.
  67. Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS: Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. Biochim Biophys Acta 2013;1827:598-611.
  68. Perez-Pinzon MA, Dave KR, Raval AP: Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain. Antioxid Redox Signal 2005;7:1150-1157.
  69. Perez-Pinzon MA: Mechanisms of neuroprotection during ischemic preconditioning: lessons from anoxic tolerance. Comp Biochem Physiol 2007;147:291-299.
  70. Hanley PJ, Gopalan KV, Lareau RA, et al: Beta-oxidation of 5-hydroxydecanoate, a putative blocker of mitochondrial ATP-sensitive potassium channels. J Physiol 2003;547:387-393.
  71. Busija DW, Katakam P, Rajapakse NC, Kis B, Grover G, Domoki F, Bari F: Effects of ATP-sensitive potassium channel activators diazoxide and BMS-191095 on membrane potential and reactive oxygen species production in isolated piglet mitochondria. Brain Res Bull 2005;66:85-90.
  72. Farkas E, Domoki F, Institoris A, et al: Neuroprotection by diazoxide in animal models for cerebrovascular disorders. Vasc Dis Prev 2006;3:253-263.

    External Resources

  73. Coetzee WA: Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther 2013;140:167-175.
  74. Kis B, Rajapakse N, Snipes JA, Nagy K, Horiguchi T, Busija DW: Diazoxide induces delayed preconditioning in cultured rat cortical neurons. J Neurochem 2003;87:969-980.
  75. Lenzser G, Kis B, Bari F, Busija DW: Diazoxide preconditioning attenuates global cerebral ischemia-induced blood-brain barrier permeability. Brain Res 2005;105:72-80.
  76. Busija DW, Gaspar T, Domoki F, Katakam PV, Bari F: Mitochondrial-mediated suppression of ROS production upon exposure of neurons to lethal stress: mitochondrial targeted preconditioning. Adv Drug Deliv Rev 2008;16:1471-1477.
  77. Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW: Opening of mitochondrial ATP-sensitive potassium channels is a trigger of 3-nitropropionic acid-induced tolerance to transient focal cerebral ischemia in rats. Stroke 2003;34:1015-1020.
  78. Grover GJ, Burkett DE, Parham CS, Scalese RJ, Sadanaga KK: Protective effect of mitochondrial KATP activation in an isolated gracilis model of ischemia and reperfusion in dogs. J Cardiovasc Pharmacol 2003;42:790-792.
  79. Grover GJ, Burkett DE, Parham CS, Scalese RJ, Sadanaga KK: Protective effect of mitochondrial KATP activation in an isolated gracilis model of ischemia and reperfusion in dogs. J Cardiovasc Pharmacol 2003;42:790-792.
  80. Bednarczyk P, Koziel A, Jarmuszkiewicz W, Szewczyk A: Large-conductance Ca2+-activated potassium channel in mitochondria of endothelial EA.hy926 cells. Am J Physiol Heart Circ Physiol 2013;304:H1415-H1427.
  81. Gaspar T, Katakam P, Snipes JA, Kis B, Domoki F, Bari F, Busija DW: Delayed neuronal preconditioning by NS1619 is independent of calcium activated potassium channels. J Neurochem 2008;105:1115-1128.
  82. Gaspar T, Domoki F, Lenti L, Katakam PVG, Snipes JA, Bari F, Busija DW: Immediate neuronal preconditioning with NS1619. Brain Res 2009;1285:196-207.
  83. Tretter L, Adam-Vizi V: Uncoupling without an effect on the production of reactive oxygen species by in situ synaptic mitochondria. J Neurochem 2007;103:1864-1871.
  84. Domoki F, Kis B, Gáspár T, Snipes JA, Bari F, Busija DW: Rosuvastatin induces delayed preconditioning against oxygen-glucose deprivation in cultured cortical neurons. Am J Physiol 2009;296:C97-C105.
  85. Domoki F, Perciaccante JV, Veltkamp R, Bari F, Busija DW: Mitochondrial potassium channel opener diazoxide preserves neuronal-vascular function after cerebral ischemia in newborn pigs. Stroke 1999;30:2713-2718.
  86. Domoki F, Bari F, Nagy K, Busija DW, Siklos L: Diazoxide prevents mitochondrial swelling and Ca2+ accumulation in CA1 pyramidal cells after cerebral ischemia in newborn pigs. Brain Res 2004;1019:97-104.
  87. Gaspar T, Kis B, Snipes JA, Lenzser G, Mayanagi K, Bari F, Busija DW: Neuronal preconditioning with the antianginal drug, bepridil. J Neurochem 2007;102:595-608.
  88. Horiguchi T, Snipes JA, Kis B, Shimizu S, Busija DW: The role of nitric oxide in the development of cortical spreading depression-induced tolerance to transient focal cerebral ischemia in rats. Brain Res 2005;1039:84-89.
  89. Horiguchi T, Kis B, Rajapakse N, Shimizu K, Busija DW: Cortical spreading depression (CSD)-induced tolerance to transient focal cerebral ischemia in halothane anesthetized rats is affected by anesthetic level but not ATP-sensitive potassium channels. Brain Res 2005;1062:127-133.
  90. Loukogeorgakis SP, Williams R, Panagiotidou AT, Kolvekar SK, Donald A, Cole TJ, Yellon DM, Deanfield JE, MacAllister RJ: Transient limb ischemia induces remote preconditioning and remote postconditioning in humans by a K(ATP)-channel dependent mechanism. Circulation 2007;116:1386-1395.
  91. Mayanagi K, Gaspar T, Katakam PV, Kis B, Busija DW: The mitochondrial K(ATP) channel opener BMS-191095 reduces neuronal damage after transient focal cerebral ischemia in rats. J Cereb Blood Flow Metab 2007;27:348-355.
  92. McIntosh VJ, Lasley RD: Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 2012;17:21-33.
  93. Robin E, Simerabet M, Hassoun SM, Adamczyk S, Tavernier B, Vallet B, Bordet R, Lebuffe G: Postconditioning in focal cerebral ischemia: role of the mitochondrial ATP-dependent potassium channel. Brain Res 2011;1375:137-146.
  94. Shimizu K, Lacza Z, Rajapakse N, Horiguchi T, Snipes J, Busija DW: MitoKATP opener, diazoxide, reduces neuronal damage after middle cerebral artery occlusion in the rat. Am J Physiol Heart Circ Physiol 2002;283:H1005-H1011.

    External Resources

  95. Broadhead MW, Kharbanda RK, Peters MJ, MacAllister RJ: KATP channel activation induces ischemic preconditioning of the endothelium in humans in vivo. Circulation 2004;110:2077-2082.
  96. Gidday JM: Cerebral preconditioning and ischaemic tolerance. Nat Rev Neurosci 2006;7:437-448.
  97. Kirino T: Ischemic tolerance. J Cereb Blood Flow Metab 2002;22:1283-1296.
  98. Zhao H: Ischemic postconditioning as a novel avenue to protect against brain injury after stroke. J Cereb Blood Flow Metab 2009;29:873-885.
  99. Levin SG, Godukhin OV: Comparative roles of ATP-sensitive K+ channels and Ca2+-activated BK+ channels in posthypoxic hyperexcitability and rapid hypoxic preconditioning in hippocampal CA1 pyramidal neurons in vitro. Neurosci Lett 2009;461:90-94.
  100. Debska G, Kicinska A, Dobrucki J, Dworakowska B, Nurowska E, Skalska J, Dolowy K, Szewczyk A: Large-conductance K+ channel openers NS1619 and NS004 as inhibitors of mitochondrial function in glioma cells. Biochem Pharmacol 2003;65:1827-1834.
  101. Veltkamp R, Domoki F, Bari F, Busija DW: Potassium channel activators protect the NMDA-induced cerebral vascular dilation after combined hypoxia and ischemia in piglets. Stroke 1998;29:837-843.
  102. Bari F, Louis TM, Busija DW: Calcium-activated K+ channels in cerebral arterioles in piglets are resistant to ischemia. J Cereb Blood Flow Metab 1997;17:1152-1156.
  103. Kicinska A, Szewczyk A: Large-conductance potassium cation channel opener NS1619 inhibits cardiac mitochondria respiratory chain. Toxicol Mech Methods 2004;14:59-61.
  104. Korper S, Nolte F, Rojewski MT, Thiel E, Schrezenmeier H: The K+ channel openers diazoxide and NS1619 induce depolarization of mitochondria and have differential effects on cell Ca2+ in CD34+ cell line KG-1a. Exp Hematol 2003;31:815-823.
  105. Harrell JW, Morgan BJ, Schrage WG: Impaired hypoxic cerebral vasodilation in younger adults with metabolic syndrome. Diab Vasc Dis Res 2013;10:135-142.
  106. Gaspar T, Kis B, Snipes J, Lenzser G, Mayanagi K, Bari F, Busija D: Transient glucose and amino acid deprivation induces delayed preconditioning in cultured rat cortical neurons. J Neurochem 2006;98:555-565.
  107. Pelligrino DA, Vetri F, Xu HL: Purinergic mechanisms in gliovascular coupling. Semin Cell Dev Biol 2011;22:229-236.
  108. You J, Johnson TD, Marrelli SP, Bryan RM Jr: Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat. Am J Physiol 1999;277:H893-H900.

    External Resources

  109. Auchampach JA, Gross GJ: Adenosine A1 receptors, KATP channels, and ischemic preconditioning in dogs. Am J Physiol 1993;264:H1327-H1336.

    External Resources

  110. Dietrich HH, Horiuchi T, Xiang C, Hongo K, Falck JR, Dacey RG Jr: Mechanism of ATP-induced local and conducted vasomotor responses in isolated rat cerebral penetrating arterioles. J Vasc Res 2009;46:253-264.
  111. Xi Q, Cheranov SY, Jaggar JH: Mitochondria-derived reactive oxygen species dilate cerebral arteries by activating Ca2+ sparks. Circ Res 2005;97:354-362.
  112. Kemper MF, Zhao Y, Duckles SP, Krause DN: Endogenous ovarian hormones affect mitochondrial efficiency in cerebral endothelium via distinct regulation of PGC-1 isoforms. J Cereb Blood Flow Metab 2013;33:122-128.
  113. Cheranov SY, Jaggar JH: Mitochondrial modulation of Ca2+ sparks and transient KCa currents in smooth muscle cells of rat cerebral arteries. J Physiol 2004;556:755-771.
  114. Oldendorf WH, Cornford ME, Brown WJ: The large apparent work capacity of the blood-brain barrier: a study of the mitochondrial content of capillary endothelial cells in brain and other tissues of the rat. Ann Neurol 1977;1:409-417.
  115. Koller A, Toth P: Contribution of flow-dependent vasomotor mechanisms to the autoregulation of cerebral blood flow. J Vasc Res 2012;49:375-389.
  116. Behringer EJ: Aging impairs electrical conduction along endothelium of resistance artries through enhanced Ca2+-activated K+ channel activation. Artrioscler Thromb Vasc Biol 2013;33:1892-1901.
  117. Razmara A, Sunday L, Stirone C, Wang XB, Krause DN, Duckles SP, Procaccio V: Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J Pharmacol Exp Ther 2008;325:782-790.
  118. Busija DW, Heistad DD: Factors involved in the physiological regulation of the cerebral circulation. Rev Physiol Biochem Pharmacol 1984;101:161-211.
  119. Dauphin F, MacKenzie ET: Cholinergic and vasoactive intestinal polypeptidergic innervation of the cerebral arteries. Pharmacol Ther 1995;67:385-417.
  120. Toda N, Okamura T: Nitroxidergic nerve: regulation of vascular tone and blood flow in the brain. J Hypertens 1996;14:423-434.
  121. Katakam PVG, Wappler E, Dutta S, Busija DW: Mitochondria-dependent cerebral artery vasodilation is mediated by the activation of neuronal nitric oxide synthase following mitochondrial depolarization of perivascular nerves (abstract). FASEB J 2012;26:1058-1059.

    External Resources

  122. Ayajiki K, Tanaka T, Okamura T, Toda N: Evidence for nitroxidergic innervation in monkey ophthalmic arteries in vivo and in vitro. Am J Physiol 2000;279:H2006-H2012.

    External Resources

  123. Jiang K, Wang J, Zhao C, Feng M, Shen Z, Yu Z, Xia Z: Regulation of gap junctional communication by astrocytic mitochondrial K(ATP) channels following neurotoxin administration in in vitro and in vivo models. Neurosignals 2011;19:63-74.
  124. Kis B, Nagy K, Snipes JA, Rajapakse N, Horiguchi T, Grover GJ, Busija DW: The mitochondrial KATP channel opener BMS191095 induces neuronal preconditioning. Neuroreport 2004;15:345-349.
  125. Kizhakekuttu TJ, Wang J, Dharmashankar K, Ying R, Gutterman DD, Vita JA, Widlansky ME: Adverse alterations in mitochondrial function contribute to type 2 diabetes mellitus-related endothelial dysfunction in humans. Arterioscler Thromb Vasc Biol 2012;32:2531-2539.
  126. Erdös B, Snipes JA, Miller AW, Busija DW: Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes 2004;53:1352-1359.
  127. Erdös B, Simandle SA, Snipes JA, Miller AW, Busija DW: Potassium channel dysfunction in cerebral arteries of insulin-resistant rats is mediated by reactive oxygen species. Stroke 2004;35:964-969.
  128. Erdös B, Snipes JA, Tulbert C, Katakam P, Miller AW, Busija DW: Rosuvastatin improves cerebrovascular function in Zucker obese rats by inhibiting NAD(P)H-oxidase-dependent superoxide anion production. Am J Physiol Heart Circ Physiol 2006;290:H1264-H1270.
  129. Bari F, Louis TM, Meng W, Busija DW: Global ischemia impairs ATP-sensitive K+ channel function in cerebral arterioles in piglets. Stroke 1996;27:1874-1881.
  130. Mayanagi K, Katakam PV, Gaspar T, Domoki F, Busija DW: Acute treatment with rosuvastatin protects insulin resistant (C57BL/6J ob/ob) mice against transient cerebral ischemia. J Cerebral Blood Flow Metab 2008;28:1927-1935.
  131. Makino A, Scott BT, Dillmann WH: Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes. Diabetologia 2010;53:1783-1794.
  132. Domoki F, Kis B, Nagy K, Farkas E, Busija DW, Bari F: Diazoxide preserves hypercapnia-induced arteriolar vasodilation after global cerebral ischemia in piglets. Am J Physiol 2005;289:H368-H373.
  133. Rutkai I, Dutta S, Liu D, Katakam PVG, Busija DW: Enhanced cerebrovascular response to mitochondrial depolarization following middle cerebral artery occlusion. Soc Neurosci Abstr 2013;144.05/L6.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50