Journal Mobile Options
Table of Contents
Vol. 56, No. 4, 2000
Issue release date: october 2000
Section title: Original Paper
Brain Behav Evol 2000;56:196–203
(DOI:10.1159/000047204)

Relative Size of the Hyperstriatum ventrale Is the Best Predictor of Feeding Innovation Rate in Birds

Timmermans S. · Lefebvre L. · Boire D. · Basu P.
aDepartment of Biology, McGill University, Montréal, bDépartement des Sciences Biologiques, cEcole d’Optométrie, Université de Montréal, Montréal, Qué., Canada

Do you have an account?

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

Register and profit from personalized services (MyKarger) Login Information

Please create your User ID & Password





Contact Information









I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Buy

  • FullText & PDF
  • Unlimited re-access via MyKarger (new!)
  • Unrestricted printing, no saving restrictions for personal use
  • Reduced rates with a PPV account
read more

Direct: USD 9.00
Account: USD 8.00

Select

Rent/Cloud

  • Rent for 48h to view
  • Buy Cloud Access for unlimited viewing via different devices
  • Synchronizing in the ReadCube Cloud
  • Printing and saving restriction apply

Rental: USD 8.50
Cloud: USD 20.00

Select

Subscribe

  • Automatic perpetual access to all articles of the subscribed year(s)
  • Unlimited re-access via Subscriber Login or MyKarger
  • Unrestricted printing, no saving restrictions for personal use
read more

Subcription rates


Select


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 12/15/2000

Number of Print Pages: 8
Number of Figures: 3
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE

Abstract

Within the avian telencephalon, the dorsal ventricular ridge (DVR) contains higher order and multimodal integration areas. Using multiple regressions on 17 avian taxa, we show that an operational estimate of behavioral flexibility, the frequency of feeding innovation reports in ornithology journals, is most closely predicted by relative size of one of these DVR areas, the hyperstriatum ventrale. Neither phylogeny, juvenile development mode, nor species sampled account for the relationship. Similar results are found when the hyperstriatum ventrale is lumped with a second DVR structure, the neostriatum. In simple correlations, size of the wulst and the striatopallidal complex is associated with feeding innovation rate, but the two structures are eliminated from the multiple regressions. Our results parallel those on primates showing a correlation between innovation rate and neocortex size and support the idea that the mammalian neocortex and the neostriatum-hyperstriatum ventrale complex in birds have similar integrative roles.


Article / Publication Details

First-Page Preview
Abstract of Original Paper

Published online: 12/15/2000

Number of Print Pages: 8
Number of Figures: 3
Number of Tables: 0

ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)

For additional information: http://www.karger.com/BBE


Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Ali, S., and D. Ripley (1995) A Pictoral Guide to the Birds of the Indian Subcontinent (2nd Ed.). Bombay Natural History Society, Oxford, UK.
  2. Bennett, P.M., and P.H. Harvey (1985) Relative brain size and ecology in birds. J. Zool. Lond. A, 207: 151–169.
  3. Boire, D. (1989) Comparaison quantitative de l’encéphale, de ses grandes subdivisions et de relais visuels, trijumeaux et acoustiques chez 28 espèces d’oiseaux. PhD diss., Université de Montréal, Montréal, Canada.
  4. Brenowitz, L., and E. Lee-Teng (1973) Contrasting effects of three forebrain ablations on discrimination learning and reversal in chicks. J. Comp. Physiol. Psychol., 81: 391–397.
  5. Csillag, A., A.D. Székely, and D.C. Davies (1994) Termination pattern of medial hyperstriatum ventrale efferents in the archistriatum of the domestic chick. J. Comp. Neurol., 348: 394– 402.
  6. Deng, C., and L.J. Rogers (1997) Differential contributions of the two visual pathways to functional lateralization in chicks. Behav. Brain Res., 87: 173–182.
  7. Deng, C., and L.J. Rogers (2000) Organization of intratelencephalic projections to the visual wulst of the chick. Brain Res., 856: 152–162.

    External Resources

  8. Divac, I., and J. Mogensen (1985) The prefrontal ‘cortex’ in the pigeon, catecholamine histofluorescence. Neurosci., 15: 677–682.
  9. Divac, I., and R.G.E. Oberg (1979) Current conceptions of neostriatal functions. In The Neostriatum (ed. by I. Divac and R.G.E. Oberg), Pergamon, Oxford, UK, pp. 215–230.
  10. Divac, I., J. Thibnault, G. Skageberg, J.M. Palacios, and M.M. Dielt (1994) Dopaminergic innervation of the brain in pigeons – the presumed prefrontal cortex. Acta Neurobiol. Exp., 54: 227–234.

    External Resources

  11. Dubbeldam, J.L. (1989) Shape and structure of the avian brain. An old problem revisited. Acta Morphol. Neerl.-Scand., 27: 33–43.
  12. Dubbeldam, J.L. (1991) The avian and mammalian forebrain: correspondences and differences. In Neural and Behavioural Plasticity. The Use of the Chick as a Model (ed. by R.J. Andrew), Oxford University Press, Oxford, UK, pp. 65– 91.
  13. Dubbeldam, J.L. (1993) Brain organisation and behaviour. A discussion of neuronal systems in birds. Acta Biotheor., 41: 469–479.
  14. Dubbeldam, J.L. (1998) Birds. In The Central Nervous System of Vertebrates (ed. by R. Nieuwenhuys, H.J. TenDonkelaar, and C. Nicholson), Springer Verlag, Berlin, Germany, pp. 1525–1620.
  15. Falla, R.A., R.B. Sibson, and E.G. Turbott (1979) The New Guide to the Birds of New Zealand and Outlying Islands. Collins, Aukland, New Zealand.
  16. Felsenstein, J. (1985) Phylogenies and the comparative method. Am. Nat., 125: 1–15.
  17. Funke, K. (1989) Somatosensory areas in the telencephalon of the pigeon. II. Spinal pathways and afferent connections. Exp. Brain Res., 76: 620– 638.
  18. Furster, J.M. (1997) The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe. Raven Press, New York, N.Y.
  19. Gossette, R.L. (1968) Examination of retention decrement explanation of comparative successive discrimination reversal learning by birds and mammals. Percept. Mot. Skills, 27: 1147– 1152.
  20. Hagemeijer, W.J.M., and M.J. Blair (eds.) (1997) The EBCC Atlas of European Breeding Birds. T & AD Poyser, London, UK.
  21. Hartmann, B., and O. Güntürkün (1998) Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: possible behavioral equivalencies to the mammalian prefrontal system. Behav. Brain. Res., 96: 125– 133.
  22. Healy, S.D. (1996) Ecological specialization in the avian brain. In Neuroethological Studies of Cognitive and Perceptual Processes (ed. by C.F. Moss and S.J. Shettleworth), Western Press, Boulder, Colo., pp. 84–110.
  23. Hodos, W., H.J. Karten, and J.C. Bonbright (1973) Visual intensity and pattern discrimination after lesions of the thalamofugal visual pathways in pigeons. J. Comp. Neurol., 148: 447–468.

    External Resources

  24. Horn, G. (1990) Neural bases of recognition memory investigated through an analysis of imprinting. Phil. Trans. Roy. Soc. Lond. B, 329: 133– 142.
  25. Karten, H.J. (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann. N.Y. Acad. Sci., 167: 164–179.
  26. Karten, H.J. (1991) Homology and evolutionary origins of the ‘neocortex’. Brain Behav. Evol., 38: 264–272.

    External Resources

  27. Karten, H.J., W. Hodos, W.J.H. Nauta, and A.M. Revzin (1973) Neural connections of the ‘visual Wulst’ of the avian telencephalon. Experimental studies in the pigeon and owl. J. Comp. Neurol., 150: 253–278.

    External Resources

  28. Lefebvre, L., A. Gaxiola, S. Dawson, S. Timmermans, L. Rozsa, and P. Kabai (1998) Feeding innovations and forebrain size in Australasian birds. Behaviour, 135: 1077–1097.
  29. Lefebvre, L., P. Whittle, E. Lascaris, and A. Finkelstein (1997) Feeding innovations and forebrain size in birds. Anim. Behav., 53: 549–560.
  30. MacPhail, E.M. (1976) Effects of hyperstriatal lesions on within-day serial reversal performance in pigeons. Physiol. Behav., 16: 529– 536.
  31. MacPhail, E.M., S. Reilly, and M. Good (1993) Lateral hyperstriatal lesions disrupt simultaneous, but not successive conditional discrimination learning of pigeons (Columba livia). Behav. Neurosci., 107: 289–298.
  32. McBride, T., S.E. Arnold, and R.C. Gur (1999) A comparative volumetric analysis of the prefrontal cortex in human and baboon MRI. Brain Behav. Evol., 54: 159–166.
  33. McCabe, B.J., J. Cipolla-Neto, G. Horn, and P.P.G. Bateson (1982) Amnesic effects of bilateral lesions placed in the hyperstriatum ventrale of the chick after imprinting. Exp. Brain Res., 45: 13–21.
  34. Medina, L., and A. Reiner (2000) Do birds possess homologues of mammalian primary visual, somatosensory and motor cortices? Trends Neurosci., 23: 1–11.
  35. Mezey S., A.D. Szekely, R.C. Bourne, P. Kabai, and A. Csillag (1999) Changes in binding to muscarinic and nicotinic cholinergic receptors in the chick telencephalon following passive avoidance learning. Neurosci. Lett., 270: 75– 78.
  36. Mitchell, R.W., N.S. Thompson, and H.L. Miles (1997) Anthropomorphism, Anecdotes and Animals. Suny Press, Albany, N.Y.
  37. Mogensen, J., and I. Divac (1993) Behavioral effects of ablation of the pigeon equivalent of the mammalian prefrontal cortex. Behav. Brain Res., 55: 101–107.
  38. Nicolakakis, N., and L. Lefebvre (2000) Forebrain size and innovation rate in European birds: feeding, nesting and confounding variables. Behaviour, in press.
  39. Nottebohm F., A. Alvarez-Buylla, J.K. Cynx, C.Y. Ling, M. Nottebohm, R. Suter, A. Tolles, and H. Williams (1990) Song learning in birds: the relation between perception and production. Philos. Trans. R. Soc. Lond. B, 329: 115– 124.
  40. Oberg, R.G.E., and I. Divac (1979) Cognitive functions of the neostriatum. In The Neostriatum (ed. by I. Divac and R.G.E. Oberg), Pergamon, Oxford, UK, pp. 291–314.
  41. Parent, A. (1986) Comparative Neurobiology of the Basal Ganglia. John Wiley & Sons, New York, N.Y.
  42. Passingham, R.E. (1975) The brain and intelligence. Brain Behav. Evol., 11: 1–15.

    External Resources

  43. Passingham, R.E., and G. Ettlinger (1974) A comparison of cortical functions in man and in other primates. Int. Rev. Neurobiol., 16: 233–299.

    External Resources

  44. Portmann, A. (1946) Étude sur la cérébralisation des oiseaux. I. Alauda, 14: 2–20.
  45. Portmann, A. (1947) Étude sur la cérébralisation chez les oiseaux. II. Alauda, 15: 1–15.
  46. Pritz, M.B., W.R. Mead, and R.G. Northcutt (1970) The effects of wulst ablations on color, brightness and pattern discrimination in pigeons (Columba livia). J. Comp. Neurol., 140: 81– 100.
  47. Purvis, A., and A. Rambaut (1995) Comparative analysis by independent contrasts (CAIC): an Apple Macintosh application for analysing comparative data. Comp. Appl. Biosci., 11: 247–251.
  48. Reader, S., and K. Laland (1999) Forebrain size, opportunism and social learning in nonhuman primates. Ethology, S34: 50.
  49. Rehkämper, G.K., and K. Zilles (1991) Parallel evolution in mammalian and avian brains: comparative cytoarchitectonic and cytochemical analysis. Cell Tissue Res., 263: 3–28.
  50. Rehkämper, G.K., H.D. Frahm, and K. Zilles (1991) Quantitative development of brain structures in birds (Galliformes and Passeriformes) compared to that in mammals (Insectivores and Primates). Brain Behav. Evol., 37: 125–143.

    External Resources

  51. Rehkämper, G.K., K. Zilles, and A. Schleicher (1984) A quantitative approach to cytoarchitectonics. IX. The areal pattern of the hyperstriatum ventrale in the domestic pigeon, Columba livia. Anat. Embryol., 169: 319–327.

    External Resources

  52. Rehkämper, G.K., K. Zilles, and A. Schleicher (1985) A quantitative approach to cytoarchitectonics. X. The areal pattern of the neostriatum in the domestic pigeon, Columba livia. A cyto- and myeloarchitectonical study. Anat. Embryol., 171: 345–355.
  53. Reiner, A. (1986) Is the prefrontal cortex found only in mammals? Trends Neurosci., 9: 298– 300.
  54. Reiner A., S.E. Brauth, and H.J. Karten (1984) Evolution of the amniote basal ganglia. Trends Neurosci., 7: 320–325.
  55. Reiner, A., L. Medina, and C.L. Veenman (1998) Structural and functional evolution of the basal ganglia in vertebrates. Brain Res. Rev., 28: 235–285.

    External Resources

  56. Reley, N., W. Hodos, and T. Pasternak (1988) Effects of serial lesions of telencephalic components of the visual system in pigeons. Vis. Neurosci., 1: 387–394.

    External Resources

  57. Sasvari, L. (1985) Keypeck conditioning with reinforcement in two different locations in thrush, tit, and sparrow species. Behav. Proc., 11: 245– 252.
  58. Scott, S. (1987) Field Guide to the Birds of North America (2nd Ed.), National Geographic Society, Washington, D.C.
  59. Shimizu, T., and W. Hodos (1989) Reversal learning in pigeons: effects of selective lesions of the wulst. Behav. Neurosci., 103: 262–272.
  60. Shimizu, T., and H.J. Karten (1993) The avian visual system and evolution of the neocortex. In Vision, Brain and Behaviour in Birds (ed. by H.P. Zeigler and H.-J. Bischof), MIT Press, Cambridge, Mass., pp. 103–114.
  61. Shimizu, T., K. Cox, and H.J. Karten (1995) Intratelencephalic projections of the visual wulst in pigeons (Columba livia). J. Comp. Neurol., 359: 551–572.
  62. Sibley, G.C., and J.E. Ahlquist (1990) Phylogeny and Classification of Birds: A Study in Molecular Evolution. Yale University Press, New Haven, Conn.
  63. Sibley, C.G., and B.L. Monroe (1990) Distribution and Taxonomy of Birds of the World. Yale University Press, New Haven, Conn.
  64. Simpson, K., and N. Day (1996) The Princeton Field Guide to the Birds of Australia. Princeton University Press, Princeton, N.J.
  65. Sol, D., and L. Lefebvre (2000) Forebrain size and foraging innovations predict invasion success in birds introduced to New Zealand. Oikos, in press.
  66. Stephan, H., G. Baron, and H.D. Frahm (1988) Comparative size of brains and brain components. In Comparative Primate Biology, Vol. 4 (ed. by H.D. Steklis and J. Erwin), Alan R. Liss, New York, N.Y., pp. 1–38.
  67. Stephan, H., H.D. Frahm, and G. Baron (1986) Comparison of brain structure volumes in Insectivora and primates. VII. Amygdaloid components. J. Hirnforsch., 28: 571–584.
  68. Stettner, L.J., and W. J. Schultz (1967) Brain lesions in birds: effects on discrimination acquisition and reversal. Science, 155: 1689–1692.

    External Resources

  69. Stewart, M.G., P. Kabai, E. Harrison, R.J. Steele, M. Kossut, and A. Csillag (1996) The involvement of dopamine in the striatum in passive avoidance training in the chick. Neuroscience, 70: 7–14.

    External Resources

  70. Struss, D.T., and D.F. Benson (1984) Neurobehavioral Disorders: A Clinical Approach. F.A. Davis, Philadelphia, Pa.
  71. Timmermans, S. (1999) Opportunism and the neostriatal/hyperstriatum ventrale complex in birds. MSc. Thesis, McGill University, Montréal, Canada.
  72. Waldmann, C., and O. Güntürkün (1993) The dopaminergic innervation of the pigeon caudolateral forebrain-immunocytochemical evidence for a prefrontal cortex in birds. Brain Res., 600: 226–234.
  73. Whiten, A., and R.W. Byrne (1988) Tactical deception in primates. Behav. Brain Sci., 11: 233– 273.
  74. Wild, J.M, J.J.A. Arends, and H.P. Zeigler (1985) Telencephalic connections of the trigeminal system in the pigeon (Columba livia): a trigeminal sensorimotor circuit. J. Comp. Neurol., 234: 441–464.
  75. Wild, J.M., H.J. Karten, and B.J. Frost (1993) Connections of the auditory forebrain in the pigeon (Columba livia). J. Comp. Neurol., 337: 32–62.

    External Resources

  76. Wyles, J.S., J.G. Kunkel, and A.C. Wilson (1983) Birds, behavior and anatomical evolution. Proc. Natl. Acad. Sci. USA, 80: 4394–4397.
  77. Zeier, H., and H.J. Karten (1971) The archistriatum of the pigeon: organization of afferent and efferent connections. Brain Res., 31: 313–326.

    External Resources