Journal Mobile Options
Table of Contents
Vol. 169, No. 2, 2001
Issue release date: 2001
Cells Tissues Organs 2001;169:89–103
(DOI:10.1159/000047867)

The Origin, Formation and Developmental Significance of the Epicardium: A Review

Männer J. · Pérez-Pomares J.M. · Macías D. · Muñoz-Chápuli R.
aDepartment of Embryology, University of Göttingen, Germany; bDepartment of Animal Biology, Faculty of Science, University of Málaga, Spain; cDepartment of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, S.C., USA

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

Questions on the embryonic origin and developmental significance of the epicardium did not receive much recognition for more than a century. It was generally thought that the epicardium was derived from the outermost layer of the primitive myocardium of the early embryonic heart tube. During the past few years, however, there has been an increasing interest in the development of the epicardium. This was caused by a series of new embryological data. The first data showed that the epicardium did not derive from the primitive myocardium but from a primarily extracardiac primordium, called the proepicardial serosa. Subsequent data then suggested that the proepicardial serosa and the newly formed epicardium provided nearly all cellular elements of the subepicardial and intermyocardial connective tissue, and of the coronary vasculature. Recent data even suggest important modulatory roles of the epicardium and of other proepicardium-derived cells in the differentiation of the embryonic myocardium and cardiac conduction system. The present paper reviews our current knowledge on the origin and embryonic development of the epicardium.



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Andrée, B., T. Hillemann, G. Kessler-Icekson, T. Schmitt-John, H. Jockusch, H.H. Arnold, T. Brand (2000) Isolation and characterization of the novel popeye gene family expressed in skeletal muscle and heart. Dev Biol 223: 371–382.
  2. Argüello, C., M.V. de la Cruz, C. Sanchez (1978) Ultrastructural and experimental evidence of myocardial differentiation into connective tissue cells in embryonic chick heart. J Mol Cell Cardiol 10: 307–315.
  3. Arias, J.L., M.S. Fernandez, J.E. Dennis, A.I. Caplan (1991) Collagens of the chicken egg shell membranes. Connect Tissue Res 26: 37–45.

    External Resources

  4. Blum, M., H. Steinbeisser, M. Campione, A. Schweickert (1999) Vertebrate left-right asymmetry: Old studies and new insights. Cell Mol Biol 45: 505–516.

    External Resources

  5. Bolender, D.L., M.C. Olson, R.R. Markwald (1990) Coronary vessel vasculogenesis. Ann NY Acad Sci 588: 404–408.
  6. Born, G. (1889) Beiträge zur Entwicklungsgeschichte des Säugetierherzens. Arch Mikrosk Anat 33: 284–378.
  7. Bouchey, D., C.J. Drake, A.M. Wunsch, C.D. Little (1996) Distribution of connective tissue proteins during development and neovascularization of the epicardium. Cardiovasc Res 31: 104–115.
  8. Burch, G.H., M.A. Bedolli, S. McDonough, S.M. Rosenthal, J. Bristow (1995) Embryonic expression of tenascin-X suggests a role in limb, muscle, and heart development. Dev Dyn 203: 491–504.
  9. Burroughs, C.L., M. Watanabe, D.E. Morse (1991) Distribution of neural cell adhesion molecule (NCAM) during heart development. J Mol Cell Cardiol 23: 1411–1422.
  10. Carmona, R., M. González-Iriarte, D. Macías, J.M. Pérez-Pomares, L. García Garrido, R. Muñoz-Chápuli (2000) Immunolocalization of the transcription factor Slug in the developing avian heart. Anat Embryol 201: 103–109.
  11. Chan-Thomas, P.S., R.P. Thompson, B. Robert, M.H. Yacoub, P.J.R. Barton (1993) Expression of homeobox genes Msx-1 (Hox-7) and Msx-2 (Hox-8) during cardiac development in the chick. Dev Dyn 197: 203–216.
  12. Cobb, W.M. (1944) Apical pericardial adhesion resembling the reptilian gubernaculum cordis. Anat Rec 89: 87–91.
  13. Cremer, H., G. Chazal, C. Goridis, A. Represa (1997) NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol Cell Neurosci 8: 323–335.
  14. De Haan, R.L. (1965) Morphogenesis of the vertebrate heart; in De Haan, R.L., H. Ursprung (eds): Organogenesis. New York, Holt, Reinhardt & Winston, pp 377–419.
  15. de la Cruz, M.V., C. Sanchez-Gomez (1998) Straight tube heart. Primitive cardiac cavities vs. primitive cardiac segments; in de la Cruz, M.V., R.R. Markwald (eds): Living Morphogenesis of the Heart. Boston, Birkhäuser, pp 85–98.
  16. Dettman, R.W., W. Denetclaw Jr., C.P. Ordahl, J. Bristow (1998) Common origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblasts in the avian heart. Dev Biol 193: 169–181.
  17. Duband, J.L., F. Monier, M. Delannet, D. Newgreen (1995) Epithelium-mesenchyme transition during neural crest development. Acta Anat 154: 63–78.
  18. Dyson, E., H.M. Sukov, S.W. Kubalak, G.W. Schmid-Schonbein, F.A. DeLano, R.M. Evans, J. Ross Jr., K.R. Chien (1995) Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha –/– mice. Proc Natl Acad Sci USA 92: 7386–7390.

    External Resources

  19. Eid, H., D.M. Larson, J.P. Springhorn, M.A. Attawia, R.C. Nayak, T.W. Smith, R.A. Kelly (1992) Role of epicardial mesothelial cells in the modification of phenotype and function of adult rat ventricular myocytes in primary coculture. Circ Res 71: 40–50.
  20. Eppenberger, M.E., I. Hauser, T. Baechi, M.C. Schaub, U.T. Brunner, C.A. Dechesne, H.M. Eppenberger (1988) Immunocytochemical analysis of the regeneration of myofibrils in long-term culture of adult cardiomyocytes of the rat. Dev Biol 130: 1–15.
  21. Fafeur, V., D. Tulasne, C. Queva, C. Vercamer, V. Dimster, V. Mattot, D. Stehelin, X. Desbiens, B. Vandenbunder (1997) The ETS1 transcription factor is expressed during epithelial-mesenchymal transitions in the chick embryo and is activated in scatter factor-stimulated MDCK epithelial cells. Cell Growth Differ 8: 655–665.
  22. Fitchett, J.E., E. Hay (1989) Medial edge epithelium transforms to mesenchyme after embryonic palatal shelves fuse. Dev Biol 131: 455–474.
  23. Fransen, M.E., L.F. Lemanski (1990) Epicardial development in the axolotl, Ambystoma mexicanum. Anat Rec 226: 228–236.
  24. Fritsch, G. (1869) Zur vergleichenden Anatomie der Amphibienherzen. Arch Anat Physiol Jahrg 1869: 654–758.
  25. George, E.L., E.N. Georges-Labouesse, R.S. Pate-King, H. Rayburn, R.O. Hynes (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119: 1079–1091.
  26. Gittenberger-de Groot, A.C., M.-P.F.M. Vrancken Peeters, M.M.T. Mentink, R.G. Gourdie, R.E. Poelmann (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circ Res 82: 1043–1052.
  27. Gorza, L., S. Schiaffino, M. Vitadello (1988) Heart conduction system: A neural crest derivative? Brain Res 457: 360–366.
  28. Gourdie, R.G., T. Mima, R.P. Thompson, T. Mikawa (1995) Terminal diversification of the myocyte lineage generates Purkinje fibers of the cardiac conduction system. Development 121: 1423–1431.

    External Resources

  29. Gourdie, R.G., Y. Wei, D. Kim, S. Klatt, T. Mikawa (1998) Endothelin-induced conversion of embryonic heart muscle cells into impulse conducting Purkinje fibers. Proc Natl Acad Sci USA 95: 6815–6818.
  30. Grant, R.T. (1926) Development of the cardiac coronary vessels in the rabbit. Heart 13: 261–271.
  31. Grant, R.T., M. Regnier (1926) The comparative anatomy of the cardiac coronary vessels. Heart 13: 285–317.
  32. Greil, A. (1903) Beiträge zur vergleichenden Anatomie und Entwicklungsgeschichte des Herzens und des Truncus arteriosus der Wirbelthiere. Gegenbaurs Morphol Jahrb 31: 123–310.
  33. Hamburger, V., H.L. Hamilton (1951) A series of normal stages in the development of the chick embryo. J Morphol 88: 49–92.
  34. Hamilton, H.L. (1952) Lillie’s Development of the Chick, ed 3. New York, Holt.
  35. Hay, E.D. (1995) An overview of epithelio-mesenchymal transformation. Acta Anat 141: 8–20.
  36. Hidai, H., R. Bardales, R. Goodwin, T. Quertermous, E.E. Quertermous (1998) Cloning of capsulin, a basic helix-loop-helix factor expressed in progenitor cells of the pericardium and the coronary arteries. Mech Dev 73: 33–43.
  37. Hirakow, R (1985) The vertebrate heart in phylogenetic relation to the prechordates; in Duncker, H.R., G. Fleischer (eds): Vertebrate Morphology. Stuttgart, Fischer, pp 367–369.
  38. Hirakow, R. (1992) Epicardial formation in staged human embryos. Acta Anat Nippon 67: 616–622.
  39. Hiruma, T., R. Hirakow (1989) Epicardial formation in embryonic chick heart: Computer-aided reconstruction, scanning and transmission electron microscopic studies. Am J Anat 184: 129–138.

    External Resources

  40. His, W. (1881) Mittheilungen zur Embryologie der Säugethiere und des Menschen. Arch Anat Entwicklungsgesch Jahrg 1881: 303–329.
  41. His, W. (1885) Anatomie menschlicher Embryonen. III. Zur Geschichte der Organe. Leipzig, Vogel.
  42. Ho, E., Y. Shimada (1978) Formation of the epicardium studied with the scanning electron microscope. Dev Biol 66: 579–585.

    External Resources

  43. Hochstetter, F. (1906) Beiträge zur Anatomie und Entwicklungsgeschichte des Blutgefässsystems der Krokodile; in Voeltzkow, A. (ed): Reise in Ostafrika. Wissenschaftliche Ergebnisse. Anat Entwicklungsgesch 4: 1–133.
  44. Hochstetter, F. (1908) Diskussionsbeitrag. Verh Anat Ges 22: 180.
  45. Hurlé, J.M., G.T. Kitten, L.Y. Sakai, D. Volpiun, M. Solursh (1994) Elastic extracellular matrix of the embryonic chick heart: An immunohistological study using laser confocal microscopy. Dev Dyn 200: 321–332.
  46. Hutchins, G.M., A. Kessler-Hanna, G.W. Moore (1988) Development of the coronary arteries in the embryonic human heart. Circulation 77: 1250–1258.
  47. Hyer, J., M. Johansen, A. Prasad, A. Wessels, M.L. Kirby, R.G. Gourdie, T. Mikawa (1999) Induction of Purkinje fiber differentiation by coronary arterialization. Proc Natl Acad Sci USA 96: 13214–13218.
  48. Icardo, J.M., M.A. Fernández-Terán, J.L. Ojeda (1990) Late heart embryology. The making of an organ; in Meisami, E., P.S. Timiras (eds): Handbook of Human Growth and Developmental Biology. Boca Raton, CRC Press, pp 25–49.
  49. Kálmán, F., S. Virágh, L. Modis (1995) Cell surface glycoconjugates and the extracellular matrix of the developing mouse embryo epicardium. Anat Embryol 191: 451–464.
  50. Kastner, P., N. Messaddeq, M. Mark, O. Wendling, J.M. Grondona, S. Ward, N. Ghyselink, P. Chambon (1997) Vitamin A deficiency and mutations of RXRα, RXRβ and RARα lead to early differentiation of embryonic ventricular myocytes. Development 124: 4749–4758.

    External Resources

  51. Kim, H., C.S. Yoon, H. Kim, B. Rah (1999) Expression of extracellular matrix components fibronectin and laminin in the human fetal heart. Cell Struct Funct 24: 19–26.
  52. Kölliker, A. (1879) Entwicklungsgeschichte des Menschen und der Thiere, ed 2. Leipzig, Engelmann, pp 171–173.
  53. Komiyama, M., K. Ito, Y. Shimada (1987) Origin and development of the epicardium in the mouse embryo. Anat Embryol 176: 183–189.

    External Resources

  54. Kuhn, H.J., G. Liebherr (1988) The early development of the epicardium in Tupaia belangerie. Anat Embryol 177: 225–234.

    External Resources

  55. Kurkiewicz, T. (1909) O histogenezie miesna sercowego zwierzat kregowych – Zur Histogenese des Herzmuskels der Wirbeltiere. Bull Int Acad Sci Cracovie, 148–191.
  56. Kwee, L., H.S. Baldwin, H.M. Shen, C.L. Stewart, C. Buck, C.A. Buck, M.A. Labow (1995) Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121: 489–503.

    External Resources

  57. Lackie, P.M., C. Zuber, J. Roth (1991) Expression of polysialylated N-CAM during rat heart development. Differentiation 47: 85–98.

    External Resources

  58. Langford, J.K., D.A. Hay, D.L. Bolender (1990) Fine structural features of coronary vasculogenesis in collagen lattices; in Bockman, D.E., M.L. Kirby (eds): Embryonic Origins of Defective Heart Development. Ann NY Acad Sci 588: 404–408.
  59. Lieberkühn, N. (1876) Über die Allantois und die Nieren von Säugethierembryonen. Sitzungsber Ges Beförderung Gesamten Naturwiss Marburg 1: 1–11.
  60. Los, J.A., C.D.A. Verwoerd (1972) The development of a primary venous system from epicardial villi in the cardiac wall of the chicken and the mouse embryo, and the relationship between this venous system and the arterial vascularisation in the mouse. Acta Morphol Neerl Scand 3: 233.
  61. Lu, J., J.A. Richardson, E.N. Olson (1998) Capsulin, a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech Dev 73: 23–32.
  62. Macías, D., J.M. Pérez-Pomares, L. García-Garrido, R. Carmona, R. Muñoz-Chápuli (1998a) Immunoreactivity of the ets-1 transcription factor correlates with areas of epithelial-mesenchymal transition in the developing avian heart. Anat Embryol 198: 307–315.
  63. Macías, D., J.M. Pérez-Pomares, L. García-Garrido, R. Muñoz-Chápuli (1998b) Immunohistochemical study of the origin of the subepicardial mesenchyme in the dogfish (Scyliorhinus canicula). Acta Zool (Stockh) 79: 335–342.
  64. MacKinnon, M.R., H. Heatwole (1981) Comparative cardiac anatomy of the reptilia. IV. The coronary arterial circulation. J Morphol 170: 1–27.

    External Resources

  65. Manasek, F.J. (1968) Embryonic development of the heart I. A light and electron microscopic study of myocardial development in the early chick embryo. J Morphol 125: 329–366.

    External Resources

  66. Manasek, F.J. (1969) Embryonic development of the heart. II. Formation of the epicardium. J Embryol Exp Morphol 22: 333–348.

    External Resources

  67. Männer, J. (1992) The development of pericardial villi in the chick embryo. Anat Embryol 186: 379–385.
  68. Männer, J. (1993) Experimental study on the formation of the epicardium in chick embryos. Anat Embryol 187: 281–289.
  69. Männer, J. (1998) The origin and course of coronary vessels: Embryological considerations. Cardiol Young 8: 534–535.
  70. Männer, J. (1999) Does the subepicardial mesenchyme contribute myocardioblasts to the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat Rec 255: 212–226.
  71. Männer, J. (2000a) Embryology of congenital ventriculo-coronary communications: A study on quail-chick chimeras. Cardiol Young 10: 233–238.

    External Resources

  72. Männer, J. (2000b) Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 259: 248–262.
  73. Männer, J., W. Seidl, G. Steding (1995) The role of extracardiac factors in normal and abnormal development of the chick embryo heart: Cranial flexure and ventral thoracic wall. Anat Embryol 191: 61–72.
  74. Markwald, R.R., C. Eisenberg, L. Eisenberg, T. Trusk, Y. Sugi (1996) Epithelial-mesenchymal transformations in early avian heart development. Acta Anat 156: 173–186.
  75. Martin, H. (1898) Recherches anatomiques et embryologiques sur les artères coronaires du coeur chez les vertèbres. Paris, Steinheil.
  76. Menkes, B. (1974) Über einen Fall von hyperplastischem Wachstum bei einem menschlichen Embryo von 6 mm grösster Länge. Streeter Horizont 14. Rev Roum Morphol Physiol 20: 187–188.

    External Resources

  77. Mikawa, T., D.A. Fischman (1992) Retroviral analysis of cardiac morphogenesis: Discontinuous formation of coronary vessels. Proc Natl Acad Sci USA 89: 9504–9508.

    External Resources

  78. Mikawa, T., R.G. Gourdie (1996) Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 174: 221–232.
  79. Mollier, S. (1906) Die erste Anlage des Herzens bei den Wirbeltieren; in Hertwig, O. (ed): Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere. Jena, Gustav Fischer, vol 1, sect 1, pp 1026–1051.
  80. Moore, A.W., L. McInnes, J. Kreidberg, N.D. Hastie, A. Schedl (1999) YAC complementation shows a requirement for Wt1 in the development of epicardium, adrenal gland and throughout nephrogenesis. Development 126: 1845–1857.
  81. Morita, T., T. Shinozawa, M. Nakamura, A. Awaya, N. Sato, I. Ishiwata, K. Kami (1998) Expression of a 68kDa-glycoprotein (GP68) and laminin in the mesodermal tissue of the developing mouse embryo. Okajimas Folia Anat Jpn 75: 185–195.
  82. Morris, E.W.T. (1976) Observations on the source of embryonic myocardioblasts. J Anat 121: 47–64.

    External Resources

  83. Moss, J.B., J. Xavier-Neto, M.D. Shapiro, S.M. Nayeem, P. McCaffery, U.C. Drägger, N. Rosenthal (1998) Dynamic patterns of retinoic acid synthesis and response in the developing mammalian heart. Dev Biol 199: 55–71.

    External Resources

  84. Muñoz-Chápuli, R., D. Macías, C. Ramos, A.V. De Andrés, A. Gallego, P. Navarro (1994) Heart development in the dogfish (Scyliorhinus canicula): A model for the study of the basic processes of vertebrate cardiogenesis. Cardioscience 5: 245–253.
  85. Muñoz-Chápuli, R., D. Macías, C. Ramos, A. Gallego, V. De Andrés (1996) Development of the subepicardial mesenchyme and the early cardiac vessels in the dogfish (Scyliorhinus canicula). J Exp Zool 275: 95–111.

    External Resources

  86. Muñoz-Chápuli, R., D. Macías, C. Ramos, B. Fernéndez, V. Sans-Coma (1997) Development of the epicardium in the dogfish (Scyliorhinus canicula). Acta Zool (Stockh) 78: 39–46.
  87. Neumann, W.D. (1952) Ein früherkennbares Organ im embryonalen Pericard; Med Diss, University of Göttingen.
  88. Okayasu, I., A. Kajita, K. Shimizu (1978) A variant form of median defect syndrome. Syndrome of combined congenital defects involving the supraumbilical abdominal wall, sternum, diaphragm, pericardium, and heart. Acta Pathol Jpn 28: 287–290.

    External Resources

  89. Patten, B.M. (1968) The development of the heart; in Gould, S.E. (ed): Pathology of the Heart and Blood Vessels. Springfield, Thomas, pp 20–90.
  90. Pérez-Pomares, J.M., D. Macías, L. García-Garrido, R. Muñoz-Chápuli (1997) Contribution of the primitive epicardium to the subepicardial mesenchyme in hamster and chick embryos. Dev Dyn 210: 96–105.
  91. Pérez-Pomares, J.M., D. Macías, L. García-Garrido, R. Muñoz-Chápuli (1998a) The origin of the subepicardial mesenchyme in the avian embryo: An immunohistochemical and quail-chick chimera study. Dev Biol 200: 57–68.
  92. Pérez-Pomares, J.M., D. Macías, L. García-Garrido, R. Muñoz-Chápuli (1998b) Immunolocalization of the vascular endothelial growth factor receptor-2 in the subepicardial mesenchyme of hamster embryos: Identification of the coronary vessel precursors. Histochem J 30: 627–634.
  93. Pérez-Pomares, J.M., D. Macías, L. García-Garrido, R. Muñoz-Chápuli (1999) Immunohistochemical evidence for a mesothelial contribution to the ventral wall of the avian aorta. Histochem J 31: 771–779.
  94. Poelmann, R.E., A.C. Gittenberger-de Groot, M.M.T. Mentink, R. Bökenkamp, B. Hogers (1993) Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ Res 73: 559–568.
  95. Quaggin, S.E., G.B. Vanden Heuvel, P. Igarash (1998) Pod-1, a mesoderm specific basic helix-loop-helix protein expressed in mesenchymal and glomerular epithelial cells in the developing kidney. Mech Dev 71: 37–48.

    External Resources

  96. Quaggin, S.E., G.B. Vanden Heuvel, P. Igarash (1999) The basic helix-loop-helix protein pod-1 is critically important for kidney and lung organogenesis. Development 126: 5771–5783.
  97. Ramos, C., D. Macías (1998) Ultrastructural study of the sinus venosus in embryos of the dogfish (Scyliorhinus canicula). Anat Embryol 198: 523–536.
  98. Remak, R. (1843) Über die Entwicklung des Hühnchens im Ei. Arch Anat Physiol Wiss Med Jahrg 1843: 478–484.
  99. Remak, R. (1855) Untersuchungen über die Entwicklung der Wirbelthiere. Berlin, Reimer.
  100. Robb, L., L. Mifsud, L. Hartley, C. Biben, N.G. Copeland, D.J. Gilbert, N.A. Jenkins, R.P. Harvey (1998) Epicardin: A novel basic helix-loop-helix transcription factor gene expressed in epicardium, branchial arch myoblasts, and mesenchyme of developing lung, gut, kidney, and gonads. Dev Dyn 213: 105–113.
  101. Robicsek, F. (1984) Origin of the anterior descending coronary artery and vein from the left mammary vessels. Am Heart J 108: 1377–1378.

    External Resources

  102. Robicsek, F., P.W. Sanger, H.K. Daugherty, V. Gallucci (1967) Origin of the anterior interventricular (descending) coronary artery and vein from the left mammary vessels. A previously unknown anomaly of the coronary system. J Thorac Cardiovasc Surg 53: 602–604.

    External Resources

  103. Roese, C. (1888) Beiträge zur Entwicklungsgeschichte des Herzens; Med Diss, University of Heidelberg.
  104. Romanoff, A.L. (1960) The Avian Embryo. Structural and Functional Development. New York, Macmillian.
  105. Santer, R.M. (1972) An electron microscopical study of the development of the teleost heart. Z Anat Entwicklungsgesch 139: 93–105.

    External Resources

  106. Shimada, Y., E. Ho (1980) Scanning electron microscopy of the embryonic chick heart: Formation of the epicardium and surface structure of the four heterotypic cells that contribute to the embryonic heart; in Van Praagh, R., A. Takao (eds): Etiology and Morphogenesis of Congenital Heart Disease. New York, Futura, pp 63–80.
  107. Shimada, Y., E. Ho, N. Toyota (1981) Epicardial covering over myocardial wall in the chicken embryo as seen with the scanning electron microscope. Scanning Electron Microsc 11: 275–280.
  108. Spalteholz, W. (1908) Zur vergleichenden Anatomie der Aa. coronariae cordis. Verh Anat Ges 22: 169–180.
  109. Steding, G., L. Klemeyer (1969) Die Entwicklung der Perikardfalte des Hühnerembryo. Z Anat Entwicklungsgesch 129: 223–233.

    External Resources

  110. Steinhoff, W. (1971) Zur Entwicklung der terminalen Strombahn im Hühnerherzen. Z Anat Entwicklungsgesch 134: 255–277.

    External Resources

  111. Streeter, G.L. (1945) Developmental horizons in human embryos: Description of age group XIII, embryos about 4 or 5 milimeters long, and age group XIV, period of indentation of the lens vesicle. Contrib Embryol 31: 29–64.
  112. Sucov, H.M., E. Dyson, C.L. Gumeringer, J. Price, K. Chien, R.M. Evans (1994) RXRα mutant mice establish a genetic basis for vitamin A signalling in heart morphogenesis. Genes Dev 8: 1007–1018.

    External Resources

  113. Tamura, K., S. Yonei-Tamura, J.C.I. Belmonte (1999) Molecular basis of left-right asymmetry. Dev Growth Differ 41: 645–656.

    External Resources

  114. Tan, C.K., T.W. Chen, H.L. Chan, L.S. Ng (1992) A scanning and transmission electron microscopic study of the membranes of the chicken egg. Histol Histopathol 7: 339–345.
  115. Tidball, J.G. (1992) Distribution of collagens and fibronectin in the subepicardium during avian cardiac development. Anat Embryol 185: 155–162.
  116. Tomanek, R.J., L. Huang, P.R. Suvarna, L.C. O’Brien, A. Ratajska, A. Sandra (1996) Coronary vascularization during development in the rat and its relationship to basic fibroblast growth factor. Cardiovasc Res 31: E116–E126.
  117. Tsuda, T., K. Majumder, K.K. Linask (1998) Differential expression of flectin in the extracellular matrix and left-right asymmetry in mouse embryonic heart during looping stages. Dev Genet 23: 203–214.
  118. Uskow, N. (1883a) Über die Entwicklung des Zwerchfells, des Pericardiums und des Coeloms. Arch Mikrosk Anat 22: 143–219.
  119. Uskow, N. (1883b) Bemerkungen zur Entwicklungsgeschichte der Leber und der Lungen. Arch Mikrosk Anat 22: 219–227.
  120. Van den Eijnde, S.M., A.C.G. Wenink, C. Vermeij-Keers (1995) Origin of subepicardial cells in rat embryos. Anat Rec 242: 96–102.
  121. Virágh, S., C.E. Challice (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201: 157–168.

    External Resources

  122. Virágh, S., F. Kálmán, A.C. Gittenberger-de Groot, R.E. Poelmann, A.F.M. Moorman (1990) Angiogenesis and hematopoiesis in the epicardium of the vertebrate embryo heart; in Bockman, D.E., M.L. Kirby (eds): Embryonic Origins of Defective Heart Development. Ann NY Acad Sci 588: 455–458.
  123. Virágh, S., A.C. Gittenberger-de Groot, R.E. Poelmann, F. Kálmán (1993) Early development of quail heart epicardium and associated vascular and glandular structures. Anat Embryol 188: 381–393.
  124. Vitadello, M., S. Vettore, E. Lamar, K.R. Chien, L. Gorza (1998) Neurofilament M mRNA is expressed in conduction system myocytes of the developing and adult rabbit heart. J Mol Cell Cardiol 28: 1833–1844.
  125. Voboril, Z., T.H. Schiebler (1969) Über die Entwicklung der Gefässversorgung des Rattenherzens. Z Anat Entwicklungsgesch 129: 24–40.
  126. Vrancken Peeters, M.-P.F.M., M.M.T. Mentink, R.E. Poelmann, A.C. Gittenberger-de Groot (1995) Cytokeratins as a marker for epicardial formation in the quail embryo. Anat Embryol 191: 503–508.
  127. Vrancken Peeters, M.-P.F.M., A.C. Gittenberger-de Groot, M.M.T. Mentink, R.E. Poelmann (1999) Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol 199: 367–378.
  128. Watanabe, M., M. Timm, H. Fallah-Najmabadi (1992) Cardiac expression of polysialylated NCAM in the chicken embryo: Correlation with the ventricular conduction system. Dev Dyn 194: 128–141.
  129. Watanabe, M., A. Choudhry, M. Berlan, A. Singal, E. Siwik, S. Mohr, S.A. Fisher (1998) Developmental remodeling of the cardiac outflow tract involves myocyte programmed cell death. Development 125: 3809–3820.

    External Resources

  130. Wilson, J.G., J. Warkany (1949) Aortic arch and cardiac anomalies in the offspring of vitamin A deficient rats. Am J Anat 85: 113–155.
  131. Xavier-Neto, J., M.D. Shapiro, L. Houghton, N. Rosenthal (2000) Sequential programs of retinoic acid synthesis in the myocardial and epicardial layers of the developing avian heart. Dev Biol 219: 129–141.
  132. Ya, J., M.J.B. Van den Hoff, P.A.J. de Boer, S. Tesink-Taekema, D. Franco, A.F.M. Moorman, W.H. Lamers (1998) Normal development of the outflow tract in the rat. Circ Res 82: 464–472.
  133. Yang, J.T., H. Rayburn, R.O. Hynes (1995) Cell adhesion events mediated by α4 integrins are essential in placental and cardiac development. Development 121: 549–560.


Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50