Journal Mobile Options
Table of Contents
Vol. 92, No. 1-2, 2001
Issue release date: 2001
Cytogenet Cell Genet 92:89–96 (2001)
(DOI:10.1159/000056875)

Chromosomal distribution, localization and expression of the human endogenous retrovirus ERV9

Svensson A-C. · Raudsepp T. · Larsson C. · Di Cristofano A. · Chowdhary B. · La Mantia G. · Rask L. · Andersson G.
aUppsala Genetic Center, Swedish University of Agricultural Sciences, Uppsala (Sweden); bDivision of Animal Genetics, Royal Veterinary and Agricultural University, Frederiksberg (Denmark); cDepartment of Molecular Medicine, Karolinska Hospital, Stockholm (Sweden); dDepartment of Human Genetics, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY; eDepartment of Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX (USA); fDepartment of Genetics, General and Molecular Biology, University of Naples, Naples (Italy); gDepartment of Medical Biochemistry and Microbiology, Uppsala University, Uppsala; hDepartment of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala Biomedical Center, Uppsala (Sweden)

Individual Users: Register with Karger Login Information

Please create your User ID & Password





Contact Information











I have read the Karger Terms and Conditions and agree.

To view the fulltext, please log in

To view the pdf, please log in

Abstract

ERV9 is a class I family of human endogenous retroviral sequences. Somatic cell hybrid genomic hybridization experiments using a mono-chromosomal panel indicate the presence of approximately 120 ERV9 loci in the human genome distributed on most chromosomes. Fluorescence in situ hybridization (FISH) using an ERV9 cDNA probe containing gag, pol and env sequences, verified this observation and a consistent signal was found at the chromosome region 11q13.3→q13.5. By analysis of a panel of radiation hybrids, an ERV9 locus was mapped to within a 300-kbp region at the chromosome site 11q13. The marker cCLGW567 and the locus MAP3K11/D11S546 centromeric and telomeric flanked it, respectively. Northern blot analysis, using an ERV9 LTR probe, indicated that most normal tissues examined expressed low abundant ERV9 LTR driven mRNAs of various sizes. The most prominent expression was found in adrenal glands and testis. However, the level of expression varied in the same tissues among different individuals indicating that ERV9 mRNA expression probably is inducible in certain tissues or at various cell stages.   



Copyright / Drug Dosage

Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher or, in the case of photocopying, direct payment of a specified fee to the Copyright Clearance Center.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in goverment regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

References

  1. Åbrink M, Larsson E, Hellman L: Demethylation of ERV3, an endogenous retrovirus regulating the Krüppel-related zinc finger gene H-plk in several human cell lines arrested during early monocyte development. DNA Cell Biol 17:27–37 (1998).
  2. Andersson AC, Svensson AC, Rolny C, Andersson G, Larsson E: Expression of human endogenous retrovirus ERV3 (HERV-R) mRNA in normal and neoplastic tissues. Int J Oncology 12:309–313 (1998a).
  3. Andersson G, Svensson AC, Setterblad N, Rask L: Retroelements in the human MHC class II region. Trends Genet 14:109–114 (1998b).
  4. Arvidsson AK, Svensson AC, Widmark E, Andersson G, Rask L, Larhammar D: Characterization of three separated exons in the HLA class II DR region of the human major histocompatibility complex. Hum Immunol 42:254–264 (1995).
  5. Brack-Werner R, Barton DE, Werner T, Foellmer BE, Leib-Mösch C, Francke U, Erfle V, Hehlmann R: Human SSAV-Related endogenous retroviral element: LTR-like sequence and chromosomal localization to 18q21. Genomics 4:68–75 (1989).
  6. Callahan R: Two families of retroviral genomes, in Lambert M, McDonald J, Weinstein I (eds): Eukaryotic transposable elements as mutagenic agents, Banbury Reports 30, pp 91–100 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor 1988).
  7. Chowdhary BP, Thomsen PD, Harbitz I, Landset M, Gustavsson I: Precise localization of the genes for glucose phosphate isomerase (GPI), calcium release channel (CRC), hormone sensitive lipase (LIPE) and growth hormone (GH) in pigs, using nonradioactive in situ hybridization. Cytogenet Cell Genet 67:211–214 (1994).

    External Resources

  8. Courseaux A, Grosgeorge J, Gaudray P, Pannett AAJ, Forbes SA, Williamson C, Bassett D, Thakker RV, Teh BT, Farnebo F, Shepheard J, Skogseid B, Larsson C, Giraud S, Zhang CX, Salandre J, Calender A: Definition of the minimal MEN1 candidate area based on a 5-Mb integrated map of proximal 11q13. Genomics 37:354–365 (1996).
  9. Di Cristofano A, Strazzullo M, Longo L, La Mantia G: Characterization and genomic mapping of the ZNF80 locus: expression of this zinc-finger gene is driven by a solitary LTR of ERV9 endogenous retroviral family. Nucl Acids Res 23:2823–2830 (1995a).
  10. Di Cristofano A, Strazzullo M, Parisi T, La Mantia G: Mobilization of an ERV9 human endogenous retroviral element during primate evolution. Virology 213:271–275 (1995b).
  11. Hattori M, Fuijiyama A, Taylor TD, Watanabe H, Yada T, Park H-S, Toyoda A, Ishii K, Totoki Y, Choi D-K, Soeda E, Ohki M, Takagi T, Sakaki Y, Taudien S, Blechschmidt K, Polley A, Menzel U, Delabar J, Kumpf K, Lehmann R, Patterson D, Reichwald K, Rump A, Schillhabel M, Schudy A, Zimmermann W, Rosenthal A, Kudoh J, Shibuya K, Kawasaki K, Asakawa S, Shintani A, Sasaki T, Nagamine K, Mitsuyama S, Antonarakis SE, Minoshima S, Shimizu N, Nordsiek G, Hornischer K, Brandt P, Scharfe M, Schon O, Desario A, Reichelt J, Kauer G, Blocker H, Ramser J, Beck A, Klages S, Hennig S, Riesselmann L, Dagand E, Haaf T, Wehrmeyer S, Borzym K, Gardiner K, Nizetic D, Francis F, Lehrach H, Reinhardt R, Yaspo M-L: The DNA sequence of human chromosome 21. The chromosome 21 mapping and sequencing consortium. Nature 405:311–319 (2000).
  12. Huang H, Qian J, Proffit J, Wilber K, Jenkins R, Smith DI: FRA7G extends over a broad region: coincidence of human endogenous retroviral sequences (HERV-H) and small polydispersed circular DNAs (spcDNA) and fragile sites. Oncogene 16:2311–2319 (1998).

    External Resources

  13. Janson M, Larsson C, Werelius B, Jones C, Glaser T, Nakamura Y, Jones CP, Nordenskjöld M: Detailed physical map of human chromosomal region 11q13 shows high meiotic recombination of the multiple endocrine neoplasia type 1 (MEN1) locus. Proc natl Acad Sci, USA 88:10609–10613 (1991).

    External Resources

  14. Kannan P, Buettner R, Pratt DR, Tainsky MA: Identification of retinoic acid-inducible endogenous retroviral transcript in the human teratocarcinoma-derived cell line PA-1. J Virol 65:6343–6348 (1991).

    External Resources

  15. La Mantia G, Pengue G, Maglione D, Pannuti A, Pascucci A, Lania L: Identification of new human repetitive sequences. Characterization of the corresponding cDNAs and their expression in embryonal carcinoma cells. Nucl Acids Res 17:5913–5922 (1989).
  16. La Mantia G, Maglione D, Pengue G, Di Cristofano A, Simeone A, Lanfrancone L, Lania L: Identification and characterization of novel human endogenous retroviral sequences preferentially expressed in undifferentiated embryonal carcinoma cells. Nucl Acids Res 19:1513–1520 (1991).
  17. La Mantia G, Majello B, Di Cristofano A, Strazzullo M, Minchiotti G, Lania L: Identification of regulatory elements within the minimal promoter region of the human endogenous ERV9 proviruses: accurate transcription initiation is controlled by Inr-like element. Nucl Acids Res 20:5913–5922 (1992).
  18. Lania L, Di Cristofano A, Strazzullo M, Pengue G, Majello B, La Mantia G: Structural and functional organization of the human retroviral ERV9 sequences. Virology 191:464–468 (1992).

    External Resources

  19. Larsson C, Weber G, Kvanta E, Lewis K, Janson M, Jones C, Glaser T, Evans G, Nordenskjöld M: Isolation and mapping of polymorphic cosmid clones used for sublocalization of the multiple endocrine neoplasia type 1 (MEN1) locus. Hum Genet 89:187–193 (1992).

    External Resources

  20. Larsson E, Venables PJW, Andersson AC, Fan W, Rigby S, Botling J, (tm)berg F, Cohen M, Nilsson K: Expression of the endogenous retrovirus ERV3 (HERV-R) during induced monocytic differentiation in the U-937 cell line. Int J Cancer 67:451–456 (1996).
  21. Larsson E, Andersson G: Beneficial role of human endogenous retroviruses: facts and hypothesis. Scand J Immunol 48:329–38 (1998).

    External Resources

  22. Lassam NJ, Lin Z, Shennan MG, Courseaux A, Teh BT, Gaudray P, Larsson C: Fine mapping of the MLK-3 gene within 11q13 and its exclusion as the MEN1 susceptibility gene. Hum Genet 99:776–780 (1997).

    External Resources

  23. Leib-Mösch C, Seifarth W: Evolution and biological significance of human retroelements. Virus Genes 11:133–145 (1996).
  24. Lim JK, Simmons MJ: Gross chromosome rearrangements mediated by transposable elements in Drosophila melanogaster. BioEssays 16:269–275 (1994).

    External Resources

  25. Long Q, Bengra C, Li C, Kutlar F, Tuan D: A long terminal repeat of the human endogenous retrovirus ERV-9 is located in the 5′ boundary area of the human β-globin locus control region. Genomics 54:542–555 (1998).

    External Resources

  26. Löwer R, Löwer J, Kurth R: The viruses in all of us: Characteristics and biological significance of human endogenous retrovirus sequences. Proc natl Acad Sci, USA 93:5177–5184 (1996).
  27. Meese E, Gottert E, Zang KD, Sauter M, Schommer S, Mueller-Lantzsch N: Human endogenous retroviral element K10 (HERV-K10): Chromosomal localization by somatic hybrid mapping and fluorescence in situ hybridization. Cytogenet Cell Genet 72:40–42 (1996).
  28. Moore E, Magee H, Coyne J, Gorey T, Dervan PA: Widespread chromosomal abnormalities in high-grade ductal carcinoma in situ of the breast. Comparative genomic hybridization study of pure high-grade DCIS. J Pathol 187:403–409 (1999).
  29. Ono M, Kawakami M, Ushikubo H: Stimulation of expression of the human endogenous retrovirus genome by female steroid hormones in human breast cancer cell line T47D. J Virol 6:2059–2062 (1987).
  30. Patience C: Endogenous retroviruses, in Weiss R, Dalgleish G (eds): HIV and the New Viruses, 2nd ed, pp 485–504 (Academic Press, San Diego 1999).
  31. Pearl A, Isaacs CM, Eddy RL, Byers MG, Sait SNJ, Shows TB: The human T-cell Leukemia Virus- Related Sequence (HRES1) is located on chromosome 1 at q42. Genomics 11:1172–1173 (1991).
  32. Renan MJ, Reeves BR: Chromosomal localization of human endogenous retroviral element ERV1 to 18q22→q23 by in situ hybridization. Cytogenet Cell Genet 44:167–170 (1987).

    External Resources

  33. Rollini P, Mach B, Gorski J: Linkage map of three HLA-DR β-chains genes: Evidence for a recent duplication event. Proc natl Acad Sci, USA 82:7197–7201 (1985).

    External Resources

  34. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA: Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491 (1988).
  35. Schuuring E: The involvement of the chromosome 11q13 region in human malignancies: cyclin D1 and EMS1 are two new candidate oncogenes – a review. Gene 159:83–96 (1995).

    External Resources

  36. Shiraishi M, Alitalo T, Sekiya T: The chromosomal organization of the Human Endogenous Retrovirus-like sequence HERV-H: Clustering of HERV-H sequences in a 300 kb region close to the GRPR locus on the X chromosome. DNA Res 3:425–429 (1996).
  37. Shuster MI, Han L, Le Beau MM, Davis E, Sawicki M, Lese CM, Park N-H, Colicelli J, Gollin SM: A consistent pattern of RIN1 rearrangements in oral squamous cell carcinoma cell lines supports a breakage-fusion-bridge cycle model for 11q13 amplification. Genes Chrom Cancer 28:153–163 (2000).
  38. Sinke RJ, Weghuis DO, Suijkerbuijk RF, Tanigami A, Nakamura Y, Larsson C, Weber G, de Jong B, Oosterhuis JW, Molenaar WM, van Kessel AG: Molecular characterization of a recurring complex chromosomal translocation in two human extragonadal germ cell tumors. Cancer Genet Cytogenet 73:11–16 (1994).
  39. Sinke RJ, van Asseldonk M, de Bruijn D, Strijk JA, Merkx G, Weghuis DO, de Jong B, Oosterhuis JW, van Kessel AG: Towards the isolation of a human malignant extragonadal germ cell tumour-associated breakpoint in chromosome 11q13. APMIS 106:73–78 (1998).
  40. Smith CM, Ma NS, Nowak NJ, Shows TB, Gerhard DS: A 3-Mb contig from D11S987 to MLK3, a gene-rich region in 11q13. Genome Res 7:835–842 (1997).

    External Resources

  41. Strazzullo M, Majello B, Lania L, La Mantia G: Mutational analysis of the human endogenous ERV9 proviruses promoter region. Virology 200:686–695 (1994).
  42. Strazzullo M, Parisi T, Di Cristofano A, Rocchi M, La Mantia G: Characterization and genomic mapping of chimeric ERV9 endogenous retroviruses-host gene transcripts. Gene 206:77–83 (1998).

    External Resources

  43. Svensson AC, Setterblad N, Sigurdardottir S, Rask L, Andersson G: Primate DRB genes from the DR3 and DR8 haplotypes contain ERV9 LTR elements at identical positions. Immunogenetics 41:74–82 (1995).

    External Resources

  44. Svensson AC, Setterblad N, Pihlgren U, Rask L, Andersson G: Evolutionary relationship between human major histocompatibility complex HLA-DR haplotypes. Immunogenetics 43:304–314 (1996).

    External Resources

  45. Svensson AC, Andersson G: Presence of retroelements reveal the evolutionary history of the human DR haplotypes. Hereditas 127:113–124 (1997).

    External Resources

  46. Taruscio D, Manuelidis L: Integration site preferences of endogenous retroviruses. Chromosoma 101:141–156 (1991).
  47. Taruscio D, Mantovani A: Eleven chromosomal integration sites of a Human Endogenous Retrovirus (HERV 4-1) map close to known loci of thirteen hereditary malformation syndromes. Teratology 54:108–110 (1996).
  48. Urnovitz HB, Murphy WH: Human endogenous retroviruses: Nature, occurrence and clinical implications in human disease. Clin Microbiol Rev 9:72–99 (1996).

    External Resources

  49. van Echten J, de Jong B, Sinke RJ, Weghuis DO, Sleijfer DT, Oosterhuis JW: Definition of a new entity of malignant extragonadal germ cell tumours. Genes Chrom Cancer 12:8–15 (1995).

    External Resources

  50. van Regenmortel MHV, Fauquet CM, Bishop DHL, Carsten EB, Estes MK, Lemon SM, Maniloff J, Mayo MA, McGeoch DJ, Pringle CR, Wickner RB: Virus taxonomy, VIIth ICTV Report, p 1104 (Academic Press, San Diego 2000).
  51. Wilkinson DA, Mager DL, Leong JAC: Endogenous human retroviruses, in Levy J (ed): The Retroviridae, vol 3, pp 465–535 (Plenum Press, New York 1994).
  52. Zucchi I, Schlessinger D: Distribution of moderately repetitive sequences pTR5 and LF1 in Xq24→q28 human DNA and their use in assembling YAC contigs. Genomics 12:264–275 (1992).

    External Resources



Pay-per-View Options
Direct payment This item at the regular price: USD 38.00
Payment from account With a Karger Pay-per-View account (down payment USD 150) you profit from a special rate for this and other single items.
This item at the discounted price: USD 26.50